Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Castonguay is active.

Publication


Featured researches published by Alexandre Castonguay.


Neurophotonics | 2017

Whole mouse brain imaging using optical coherence tomography: reconstruction, normalization, segmentation, and comparison with diffusion MRI

Joël Lefebvre; Alexandre Castonguay; Philippe Pouliot; Maxime Descoteaux; Frédéric Lesage

Abstract. An automated massive histology setup combined with an optical coherence tomography (OCT) microscope was used to image a total of n=5 whole mouse brains. Each acquisition generated a dataset of thousands of OCT volumetric tiles at a sampling resolution of 4.9×4.9×6.5  μm. This paper describes techniques for reconstruction and segmentation of the sliced brains. In addition to the measured OCT optical reflectivity, a single scattering photon model was used to compute the attenuation coefficients within each tissue slice. Average mouse brain templates were generated for both the OCT reflectivity and attenuation contrasts and were used with an n-tissue segmentation algorithm. To better understand the brain tissue OCT contrast origin, one of the mouse brains was acquired using dMRI and coregistered to its corresponding assembled brain. Our results indicate that the optical reflectivity in a fiber bundle varies with its orientation, its fiber density, and the number of fiber orientations it contains. The OCT mouse brain template generation and coregistration to dMRI data demonstrate the potential of this massive histology technique to pursue cross-sectional, multimodal, and multisubject investigations of small animal brains.


PLOS ONE | 2014

Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics

Alexandre Castonguay; Sébastien Thomas; Frédéric Lesage; Christian Casanova

Optogenetics allows the control of cellular activity using focused delivery of light pulses. In neuroscience, optogenetic protocols have been shown to efficiently inhibit or stimulate neuronal activity with a high temporal resolution. Among the technical challenges associated with the use of optogenetics, one is the ability to target a spatially specific population of neurons in a given brain structure. To address this issue, we developed a side-illuminating optical fiber capable of delivering light to specific sites in a target nucleus with added flexibility through rotation and translation of the fiber and by varying the output light power. The designed optical fiber was tested in vivo in visual structures of ChR2-expressing transgenic mice. To assess the spatial extent of neuronal activity modulation, we took advantage of the hallmark of the visual system: its retinotopic organization. Indeed, the relative position of ganglion cells in the retina is transposed in the cellular topography of both the dorsal lateral geniculate nucleus (LGN) in the thalamus and the primary visual cortex (V1). The optical fiber was inserted in the LGN and by rotating it with a motor, it was possible to sequentially activate different neuronal populations within this structure. The activation of V1 neurons by LGN projections was recorded using intrinsic optical imaging. Increasing light intensity (from 1.4 to 8.9 mW/mm2) led to increasing activation surfaces in V1. Optogenetic stimulation of the LGN at different translational and rotational positions was associated with different activation maps in V1. The position and/or orientation of the fiber inevitably varied across experiments, thus limiting the capacity to pool data. With the optogenetic design presented here, we demonstrate for the first time a transitory and spatially-concise activation of a deep neuronal structure. The optogenetic design presented here thus opens a promising avenue for studying the function of deep brain structures.


International Journal of Molecular Sciences | 2016

Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy

Pier-Luc Tardif; Marie-Jeanne Bertrand; Maxime Abran; Alexandre Castonguay; Joël Lefebvre; Barbara E. Stähli; Nolwenn Merlet; Teodora Mihalache-Avram; Pascale Geoffroy; Mélanie Mecteau; David Busseuil; Feng Ni; Abedelnasser Abulrob; Eric Rhéaume; Philippe L. L’Allier; Jean-Claude Tardif; Frédéric Lesage

Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology.


Proceedings of SPIE | 2015

Investigating the correlation between white matter and microvasculature changes in aging using large scale optical coherence tomography and confocal fluorescence imaging combined with tissue sectioning

Alexandre Castonguay; Pramod K. Avti; Mohammad Moeini; Philippe Pouliot; Maryam S. Tabatabaei; Samuel Bélanger; Frédéric Lesage

Here, we present a serial OCT/confocal scanner for histological study of the mouse brain. Three axis linear stages combined with a sectioning vibratome allows to cut thru the entire biological tissue and to image every section at a microscopic resolution. After acquisition, each OCT volume and confocal image is re-stitched with adjacent acquisitions to obtain a reconstructed, digital volume of the imaged tissue. This imaging platform was used to investigate correlations between white matter and microvasculature changes in aging mice. Three age groups were used in this study (4, 12, 24 months). At sacrifice, mice were transcardially perfused with a FITC containing gel. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of a FITC shows microsvasculature in the brain with confocal imaging.


Proceedings of SPIE | 2015

Effects of anesthesia on the cerebral capillary blood flow in young and old mice

Mohammad Moeini; Maryam S. Tabatabaei; Samuel Bélanger; Pramod K. Avti; Alexandre Castonguay; Philippe Pouliot; Frédéric Lesage

Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.


Neural Imaging and Sensing 2018 | 2018

Imaging whole mouse brains with a dual resolution serial swept-source optical coherence tomography scanner

Joël Lefebvre; Alexandre Castonguay; Frédéric Lesage

High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.


Multiphoton Microscopy in the Biomedical Sciences XVIII | 2018

Large scale serial two-photon microscopy to investigate local vascular changes in whole rodent brain models of Alzheimer's disease

Patrick Delafontaine-Martel; Frédéric Lesage; Rafat R. Damseh; Joël Lefebvre; Alexandre Castonguay; Pier-Luc Tardif

In this study, an automated serial two-photon microscope was used to image a fluorescent gelatin filled rodent’s brain in 3D. A method to compute vascular density using automatic segmentation was combined with coregistration techniques to build group-level vasculature metrics. By studying the medial prefrontal cortex and the hippocampal formation of 3 age groups (2, 4.5 and 8 months old), we compared vascular density for both WT and an Alzheimer model transgenic brain (APP/PS1). We observe a loss of vascular density caused by the ageing process and we propose further analysis to confirm our results.


Journal of Biomedical Optics | 2018

Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain

Alexandre Castonguay; Joël Lefebvre; Frédéric Lesage; Philippe Pouliot

Abstract. An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5)  μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.


Proceedings of SPIE | 2017

White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

Joël Lefebvre; Alexandre Castonguay; Frédéric Lesage

A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.


Biomedical Optics Express | 2017

Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart

Alexandre Castonguay; Joël Lefebvre; Philippe Pouliot; Pramod K. Avti; Mohammad Moeini; Frédéric Lesage

Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function.

Collaboration


Dive into the Alexandre Castonguay's collaboration.

Top Co-Authors

Avatar

Frédéric Lesage

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Joël Lefebvre

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Philippe Pouliot

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Mohammad Moeini

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Pier-Luc Tardif

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Pramod K. Avti

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maryam S. Tabatabaei

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar

Samuel Bélanger

École Polytechnique de Montréal

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge