Mohammad Moeini
École Polytechnique de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Moeini.
Journal of Biomechanics | 2012
Mohammad Moeini; Kwan-Bong Lee; Thomas M. Quinn
Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential.
Archives of Biochemistry and Biophysics | 2013
Hooi Chuan Chin; Mohammad Moeini; Thomas M. Quinn
Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging.
Biophysical Journal | 2014
Yousef Shafieyan; Niloufar Khosravi; Mohammad Moeini; Thomas M. Quinn
Cartilage has a limited capacity for self-repair and focal damage can eventually lead to complete degradation of the tissue. Early diagnosis of degenerative changes in cartilage is therefore essential. Contrast agent-based computed tomography and magnetic resonance imaging provide promising tools for this purpose. However, the common assumption in clinical applications that contrast agents reach steady-state distributions within the tissue has been of questionable validity. Characterization of nonequilibrium diffusion of contrast agents rather than their equilibrium distributions may therefore be more effective for image-based cartilage assessment. Transport of contrast agent through the extracellular matrix of cartilage can be affected by tissue compression due to matrix structural and compositional changes including reduced pore size and fluid content. We therefore investigate the effects of static compression on diffusion of three common contrast agents: sodium iodide, sodium diatrizoate, and gadolinium diethylenetriamine-pentaacid (Gd-DTPA). Results showed that static compression was associated with significant decreases in diffusivities for sodium iodide and Gd-DTPA, with similar (but not significant) trends for sodium diatrizoate. Molecular mass of contrast agents affected diffusivities as the smallest one tested, sodium iodide, showed higher diffusivity than sodium diatrizoate and Gd-DTPA. Compression-associated cartilage matrix alterations such as glycosaminoglycan and fluid contents were found to correspond with variations in contrast agent diffusivities. Although decreased diffusivity was significantly correlated with increasing glycosaminoglycan content for sodium iodide and Gd-DTPA only, diffusivity significantly increased for all contrast agents by increasing fluid fraction. Because compounds based on iodine and gadolinium are commonly used for computed tomography and magnetic resonance imaging, present findings can be valuable for more accurate image-based assessment of variations in cartilage composition associated with focal injuries.
Biophysical Journal | 2013
Sarah G.A. Decker; Mohammad Moeini; Hooi Chuan Chin; Derek H. Rosenzweig; Thomas M. Quinn
The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces.
Soft Matter | 2012
Mohammad Moeini; Thomas M. Quinn
Solute transport is important to biological activities and contrast agent-based imaging of articular cartilage. Solute partitioning, which characterizes equilibrium concentration distributions within tissues, is typically measured assuming that solute is distributed within the tissue volume. However, solutes also adsorb to cartilage surfaces. Ignoring this adsorption results in measurements of apparent partition coefficients (Ka) significantly greater than actual ones (K). A theoretical model was developed to predict the resulting errors in partition coefficient measurements and to estimate K based on Ka data. These errors increase as explant surface/volume ratio (S/V) increases. A range of solutes including 3 or 4 kDa and 40 kDa dextrans, chondroitin sulfate, insulin and myoglobin conjugated to three different fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC) and carboxytetramethylrhodamine (TAMRA)) and fluorophores alone were studied. Experiments showed significant increases in Ka with S/V for FITC and TRITC and their conjugates. For TAMRA, while increased S/V increased Ka of dextrans, it did not affect Ka of chondroitin sulfate, insulin, myoglobin or TAMRA alone. S/V had the most significant effect on Ka for TRITC and its conjugates and smallest effects for TAMRA and its conjugates. Fluorescence microscopy confirmed solute accumulation at cartilage surfaces for all solutes, with strongest adsorption for TAMRA and weakest for FITC. Consistent with theory, under these extreme conditions Ka was less affected by adsorption; otherwise differences between K and Ka were significant. Differences in adsorption and transport properties of solutes labeled with different fluorophores highlighted the importance of molecular-level solute–matrix interactions on solute transport in cartilage.
Biochimica et Biophysica Acta | 2014
Mohammad Moeini; Sarah G.A. Decker; Hooi Chuan Chin; Yousef Shafieyan; Derek H. Rosenzweig; Thomas M. Quinn
BACKGROUND Currently available methods for contrast agent-based magnetic resonance imaging (MRI) and computed tomography (CT) of articular cartilage can only detect cartilage degradation after biochemical changes have occurred within the tissue volume. Differential adsorption of solutes to damaged and intact surfaces of cartilage may be used as a potential mechanism for detection of injuries before biochemical changes in the tissue volume occur. METHODS Adsorption of four fluorescent macromolecules to surfaces of injured and sliced cartilage explants was studied. Solutes included native dextran, dextrans modified with aldehyde groups or a chondroitin sulfate (CS)-binding peptide and the peptide alone. RESULTS Adsorption of solutes to fissures was significantly less than to intact surfaces of injured and sliced explants. Moreover, solute adsorption at intact surfaces of injured and sliced explants was less reversible than at surfaces of uninjured explants. Modification of dextrans with aldehyde or the peptide enhanced adsorption with the same level of differential adsorption to cracked and intact surfaces. However, aldehyde-dextran exhibited irreversible adsorption. Equilibration of explants in solutes did not decrease the viability of chondrocytes. CONCLUSIONS AND GENERAL SIGNIFICANCE Studied solutes showed promising potential for detection of surface injuries based on differential interactions with cracked and intact surfaces. Additionally, altered adsorption properties at surfaces of damaged cartilage which visually look healthy can be used to detect micro-damage or biochemical changes in these regions. Studied solutes can be used in in vivo fluorescence imaging methods or conjugated with MRI or CT contrast agents to develop functional imaging agents.
Proceedings of SPIE | 2015
Alexandre Castonguay; Pramod K. Avti; Mohammad Moeini; Philippe Pouliot; Maryam S. Tabatabaei; Samuel Bélanger; Frédéric Lesage
Here, we present a serial OCT/confocal scanner for histological study of the mouse brain. Three axis linear stages combined with a sectioning vibratome allows to cut thru the entire biological tissue and to image every section at a microscopic resolution. After acquisition, each OCT volume and confocal image is re-stitched with adjacent acquisitions to obtain a reconstructed, digital volume of the imaged tissue. This imaging platform was used to investigate correlations between white matter and microvasculature changes in aging mice. Three age groups were used in this study (4, 12, 24 months). At sacrifice, mice were transcardially perfused with a FITC containing gel. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of a FITC shows microsvasculature in the brain with confocal imaging.
Proceedings of SPIE | 2015
Mohammad Moeini; Maryam S. Tabatabaei; Samuel Bélanger; Pramod K. Avti; Alexandre Castonguay; Philippe Pouliot; Frédéric Lesage
Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.
Journal of Cerebral Blood Flow and Metabolism | 2017
Cong Zhang; Maryam S. Tabatabaei; Samuel Bélanger; Hélène Girouard; Mohammad Moeini; Xuecong Lu; Frédéric Lesage
Neurovascular coupling (NVC) underlying the local increase in blood flow during neural activity forms the basis of functional brain imaging and is altered in epilepsy. Because astrocytic calcium (Ca2+) signaling is involved in NVC, this study investigates the role of this pathway in epilepsy. Here, we exploit 4-AP induced epileptic events to show that absolute Ca2+ concentration in cortical astrocyte endfeet in vivo correlates with the diameter of precapillary arterioles during neural activity. We simultaneously monitored free Ca2+ concentration in astrocytic endfeet with the Ca2+-sensitive indicator OGB-1 and diameter of adjacent arterioles in the somatosensory cortex of adult mice by two-photon fluorescence lifetime measurements following 4-AP injection. Our results reveal that, regardless of the mechanism by which astrocytic endfoot Ca2+ was elevated during epileptic events, increases in Ca2+ associated with vasodilation for each individual ictal event in the focus. In the remote area, increases in Ca2+ correlated with vasoconstriction at the onset of seizure and vasodilation during the later part of the seizure. Furthermore, a slow increase in absolute Ca2+ with time following multiple seizures was observed, which in turn, correlated with a trend of arteriolar constriction both at the epileptic focus and remote areas.
Biomedical Optics Express | 2017
Alexandre Castonguay; Joël Lefebvre; Philippe Pouliot; Pramod K. Avti; Mohammad Moeini; Frédéric Lesage
Normal aging is accompanied by structural changes in the heart architecture. To explore this remodeling, we used a serial optical coherence tomography scanner to image entire mouse hearts at micron scale resolution. Ex vivo hearts of 7 young (4 months) and 5 old (24 months) C57BL/6 mice were acquired with the imaging platform. OCT of the myocardium revealed myofiber orientation changing linearly from the endocardium to the epicardium. In old mice, this rate of change was lower when compared to young mice while the average volume of old mice hearts was significantly larger (p<0.05). Myocardial wall thickening was also accompanied by extracellular spacing in the endocardium, resulting in a lower OCT attenuation coefficient in old mice endocardium (p<0.05). Prior to serial sectioning, cardiac function of the same hearts was imaged in vivo using MRI and revealed a reduced ejection fraction with aging. The use of a serial optical coherence tomography scanner allows new insight into fine age-related changes of the heart associated with changes in heart function.