Alexandre Ferro Aissa
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre Ferro Aissa.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2010
Juliana Carvalho Ribeiro; Lusânia Maria Greggi Antunes; Alexandre Ferro Aissa; Joana Darc Castania Darin; Veridiana Vera de Rosso; Adriana Zerlotti Mercadante; Maria de Lourdes Pires Bianchi
Açai, the fruit of a palm native to the Amazonian basin, is widely distributed in northern South America, where it has considerable economic importance. Whereas individual polyphenolics compounds in açai have been extensively evaluated, studies of the intact fruit and its biological properties are lacking. Therefore, the present study was undertaken to investigate the in vivo genotoxicity of açai and its possible antigenotoxicity on doxorubicin (DXR)-induced DNA damage. The açai pulp doses selected were 3.33, 10.0 and 16.67g/kg b.w. administered by gavage alone or prior to DXR (16mg/kg b.w.) administered by intraperitoneal injection. Swiss albino mice were distributed in eight groups for acute treatment with açai pulp (24h) and eight groups for subacute treatment (daily for 14 consecutive days) before euthanasia. The negative control groups were treated in a similar way. The results of chemical analysis suggested the presence of carotenoids, anthocyanins, phenolic, and flavonoids in açai pulp. The endpoints analyzed were micronucleus induction in bone marrow and peripheral blood cells polychromatic erythrocytes, and DNA damage in peripheral blood, liver and kidney cells assessed using the alkaline (pH >13) comet assay. There were no statistically significant differences (p>0.05) between the negative control and the groups treated with the three doses of açai pulp alone in all endpoints analyzed, demonstrating the absence of genotoxic effects. The protective effects of açai pulp were observed in both acute and subacute treatments, when administered prior to DXR. In general, subacute treatment provided greater efficiency in protecting against DXR-induced DNA damage in liver and kidney cells. These protective effects can be explained as the result of the phytochemicals present in açai pulp. These results will be applied to the developmental of food with functional characteristics, as well as to explore the characteristics of açai as a health promoter.
Molecular Nutrition & Food Research | 2014
Alexandre Ferro Aissa; Volodymyr Tryndyak; Aline de Conti; Stepan Melnyk; Tarsila Daysy Ursula Hermogenes Gomes; Maria de Lourdes Pires Bianchi; S. Jill James; Frederick A. Beland; Lusania Maria Greggi Antunes; Igor P. Pogribny
SCOPE A compromised nutritional status in methyl-group donors may provoke several molecular alterations triggering the development of nonalcoholic fatty liver disease (NAFLD) in humans and experimental animals. In this study, we investigated a role and the underlying molecular mechanisms of methionine metabolic pathway malfunctions in the pathogenesis of NAFLD. METHODS AND RESULTS We fed female Swiss albino mice a control (methionine-adequate) diet and two experimental (methionine-deficient or methionine-supplemented) diets for 10 weeks, and the levels of one-carbon metabolites, expression of one-carbon and lipid metabolism genes in the livers were evaluated. We demonstrate that both experimental diets increased hepatic levels of S-adenosyl-l-homocysteine and homocysteine, altered expression of one-carbon and lipid metabolism genes, and caused lipid accumulation, especially in mice fed the methionine-deficient diet. Markers of oxidative and ER stress response were also elevated in the livers of mice fed either diet. CONCLUSION Our findings indicate that both dietary methionine deficiency and methionine supplementation can induce molecular abnormalities in the liver associated with the development of NAFLD, including deregulation in lipid and one-carbon metabolic pathways, and induction of oxidative and ER stress. These pathophysiological events may ultimately lead to lipid accumulation in the livers, triggering the development of NAFLD.
Food and Chemical Toxicology | 2012
Alexandre Ferro Aissa; Maria de Lourdes Pires Bianchi; Juliana Carvalho Ribeiro; Lívia Cristina Hernandes; Adelia Ferreira de Faria; Adriana Zerlotti Mercadante; Lusânia Maria Greggi Antunes
β-Carotene (BC) is one of the natural pigments that is most commonly added to food; however, the utilization of BC is limited due to its instability. Microencapsulation techniques are commonly used because they can protect the microencapsulated material from oxidization. Nevertheless, the properties of the encapsulated compounds must be studied. We compared the antigenotoxic potential of pure and microencapsulated β-carotene (mBC) in Wistar rats. Two doses of BC or mBC (2.5 or 5.0 mg/kg) were administered by gavage over a period of 14 days. The final gavage was followed by an injection of doxorubicin (DXR). After 24h the animals were euthanized. The micronucleus test results showed that when both mBC and DXR were given, only the higher dose was antigenotoxic. The results of the comet assay show that when given in association with DXR, mBC had protective effects in the liver. The differences between the results obtained with BC and mBC suggest that possibly the carotenoid biodisponibility was modified by the process of microencapsulation. In conclusion, mBC does not lose its protective properties, but higher doses must be used to observe antigenotoxic effects. This is the first time that the genotoxicity and antigenotoxicity of a microencapsulated compound was evaluated in vivo.
Scientific Reports | 2017
Tássia R. Costa; Danilo L. Menaldo; Karina F. Zoccal; Sandra Mara Burin; Alexandre Ferro Aissa; Fabíola Attié de Castro; Lúcia Helena Faccioli; Lusânia Maria Greggi Antunes; Suely V. Sampaio
L-amino acid oxidases from snake venoms have been described to possess various biological functions. In this study, we investigated the inflammatory responses induced in vivo and in vitro by CR-LAAO, an L-amino acid oxidase isolated from Calloselasma rhodostoma venom, and its antitumor potential. CR-LAAO induced acute inflammatory responses in vivo, with recruitment of neutrophils and release of IL-6, IL-1β, LTB4 and PGE2. In vitro, IL-6 and IL-1β production by peritoneal macrophages stimulated with CR-LAAO was dependent of the activation of the Toll-like receptors TLR2 and TLR4. In addition, CR-LAAO promoted apoptosis of HL-60 and HepG2 tumor cells mediated by the release of hydrogen peroxide and activation of immune cells, resulting in oxidative stress and production of IL-6 and IL-1β that triggered a series of events, such as activation of caspase 8, 9 and 3, and the expression of the pro-apoptotic gene BAX. We also observed that CR-LAAO modulated the cell cycle of these tumor cells, promoting delay in the G0/G1 and S phases. Taken together, our results suggest that CR-LAAO could serve as a potential tool for the development of novel immunotherapeutic strategies against cancer, since this toxin promoted apoptosis of tumor cells and also activated immune cells against them.
Environmental and Molecular Mutagenesis | 2012
Gustavo Rafael Mazzaron Barcelos; Denise Grotto; Juliana Mara Serpeloni; Alexandre Ferro Aissa; Lusânia Maria Greggi Antunes; Siegfried Knasmüller; Fernando Barbosa
Populations in the Amazon are exposed to organic mercury via consumption of contaminated foods. These ethnic groups consume a specific plant seed “annatto” which contains certain carotenoids. The aim of this study was to find out if these compounds (bixin, BIX and norbixin, NOR), protect against DNA‐damage caused by the metal. Therefore, rats were treated orally with methylmercury (MeHg) and with the carotenoids under conditions that are relevant to humans. The animals were treated either with MeHg (30 μg/kg/bw/day), BIX (0.1–10 mg/kg/bw/day), NOR (0.01–1.0 mg/kg/bw/day) or combinations of the metal compound and the carotenoids consecutively for 45 days. Subsequently, the glutathione levels (GSH) and the activity of catalase were determined, and DNA‐damage was measured in hepatocytes and leukocytes using single cell gel electrophoresis assays. Treatment with the metal alone caused a decrease in the GSH levels (35%) and induced DNA damage, which resulted in increased DNA migration after electrophoresis in liver and blood cells, whereas no effects were seen with the carotenoids alone. When BIX or NOR were given in combination with organic mercury, the intermediate and the highest concentrations of the carotenoids (1.0 and 10.0 mg/kg/bw/day BIX and 0.1 and 1.0 mg/kg/bw/day NOR) protected against DNA‐damage. Furthermore, we found with both carotenoids, a moderate increase in the GSH levels in both metal‐treated and untreated animals, while the activities of catalase remained unchanged. Our results indicate that consumption of BIX and NOR may protect humans against the adverse health effects caused by exposure to organic mercury. Environ. Mol. Mutagen., 2012.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2011
Juliana Mara Serpeloni; Denise Grotto; Alexandre Ferro Aissa; Adriana Zerlotti Mercadante; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
We investigated the effects of the dietary pigment chlorophyll b (CLb) on cisplatin (cDDP)-induced oxidative stress and DNA damage, using the comet assay in mouse peripheral blood cells and the micronucleus (MN) test in bone marrow and peripheral blood cells. We also tested for thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) in liver and kidney tissues, as well as catalase (CAT) activity and GSH in total blood. CLb (0.2 and 0.5mg/kg b.w.) was administrated by gavage every day for 13 days. On the 14th day of the experiment, 6 mg/kg cDDP or saline was delivered intraperitoneally. Treatment with cDDP led to a significant decrease in DNA migration and an increase in MN frequency in both cell types, bone marrow and peripheral blood cells. In the kidneys of mice treated with cDDP, TBARS levels were increased, whereas GSH levels were depleted in kidney and liver. In mice that were pre-treated with CLb and then treated with cDDP, TBARS levels maintained normal concentrations and GSH did not differ from cDDP group. The improvement of oxidative stress biomarkers after CLb pre-treatment was associated with a decrease in DNA damage, mainly for the highest dose evaluated. Furthermore, CLb also slightly reduced the frequency of chromosomal breakage and micronucleus formation in mouse bone marrow and peripheral blood cells. These results show that pre-treatment with CLb attenuates cDDP-induced oxidative stress, chromosome instability, and lipid peroxidation.
Food and Chemical Toxicology | 2014
Juliana Mara Serpeloni; Ilce Mara de Syllos Cólus; F.S. Oliveira; Alexandre Ferro Aissa; Adriana Zerlotti Mercadante; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
Lutein (LT) is a carotenoid obtained by diet and despite its antioxidant activity had been biochemically reported, few studies are available concerning its influence on the expression of antioxidant genes. The expression of 84 genes implicated in antioxidant defense was quantified using quantitative reverse transcription polymerase chain reaction array. DNA damage was measured by comet assay and glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were quantified as biochemical parameters of oxidative stress in mouse kidney and liver. cDDP treatment reduced concentration of GSH and increased TBARS, parameters that were ameliorated in treatment associated with LT. cDDP altered the expression of 32 genes, increasing the expression of GPx2, APC, Nqo1 and CCs. LT changed the expression of 37 genes with an induction of 13 mainly oxygen transporters. In treatments associating cDDP and LT, 30 genes had their expression changed with a increase of the same genes of the cDDP treatment alone. These results suggest that LT might act scavenging reactive species and also inducing the expression of genes related to a better antioxidant response, highlighting the improvement of oxygen transport. This improved redox state of the cell through LT treatment could be related to the antigenotoxic and antioxidant effects observed.
Food and Chemical Toxicology | 2013
Alexandre Ferro Aissa; Tarsila Daysy Ursula Hermogenes Gomes; Mara Ribeiro Almeida; Lívia Cristina Hernandes; Joana Darc Castania Darin; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
Inadequate nutrient intake can influence the genome. Since methionine is an essential amino acid that may influence DNA integrity due to its role in the one-carbon metabolism pathway, we were interested in whether methionine imbalance can lead to genotoxic events. Adult female Swiss mice were fed a control (0.3% dl-methionine), methionine-supplemented (2.0% DL-methionine) or methionine-deficient (0% DL-methionine) diet over a 10-week period. Chromosomal damage was assessed in peripheral blood using a micronucleus test, and DNA damage was assessed in the liver, heart and peripheral blood tissues using a comet assay. The mRNA expression of the mismatch repair genes Mlh1 and Msh2 was analyzed in the liver. The frequency of micronucleus in peripheral blood was increased by 122% in the methionine-supplemented group (p<0.05). The methionine-supplemented diet did not induce DNA damage in the heart and liver tissues, but it increased DNA damage in the peripheral blood. The methionine-deficient diet reduced basal DNA damage in liver tissue. This reduction was correlated with decreased mRNA expression of Msh2. Our results demonstrate that methionine has a tissue-specific effect because methionine-supplemented diet induced both chromosomal and DNA damage in peripheral blood while the methionine-deficient diet reduced basal DNA damage in the liver.
International Journal of Biological Macromolecules | 2018
A.R.T. Machado; Alexandre Ferro Aissa; Diego Luis Ribeiro; Lívia Cristina Hernandes; Carla da Silva Machado; Maria de Lourdes Pires Bianchi; Suely V. Sampaio; Lusânia Maria Greggi Antunes
Colorectal carcinoma is one of the most common cancers in adults. As chemotherapy, the first-choice treatment for colorectal carcinoma, is often infeasible due to acquired tumor resistance and several adverse effects, it is important to discover and explore new molecules with better therapeutic action. Snake venom toxins have shown promising results with high cytotoxicity against tumor cells, but their mechanisms of action remain unclear. Here we examined how BjussuLAAO-II, an L-amino acid oxidase isolated from Bothrops jararacussu snake venom, exerts cytotoxicity towards colorectal adenocarcinoma human cells (Caco-2) and human umbilical vein endothelial cell line (HUVEC). A 24-h treatment with BjussuLAAO-II at 0.25 - 5.00 μg/mL diminished cell viability by decreasing (i) mitochondrial activity, assessed by reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and resazurin; (ii) the activity of acid phosphatases; and (iii) lysosomal function, assessed by neutral red uptake. BjussuLAAO-II also increased intracellular levels of reactive oxygen species and DNA damage, as assessed by fluorescence and the comet assay, respectively. BjussuLAAO-II altered the expression of cell proliferation-related genes, as determined by RT-qPCR: it elevated the expression of the inflammatory cytokine genes TNF and IL6, and lowered the expression of the apoptotic-related genes BAX, BCL2, and RELA. Therefore, BjussuLAAO-II induces Caco-2 cells death by acting on multiple intracellular targets, providing important data for further studies to assess whether these effects are seen in both tumor and normal cells, with the aim of selecting this drug for possible therapeutic purposes in the future.
Toxicology | 2017
M.B. Mello; C.S. Machado; Diego Luis Ribeiro; Alexandre Ferro Aissa; R.V. Burim; M.A. Alves da Cunha; G.R.M. Barcelos; Lusânia Maria Greggi Antunes; M.L.P. Bianchi
The lasiodiplodan (LS) is a β-(1→6)-d-glucan produced by the fungus Lasiodiplodia theobromae and some of the biological activities of LS were reported as hypoglycemic, anticoagulant, anti-proliferative and anticancer action; however, its effects on DNA instability and modulation of gene expression are still unclear. Aims of study were investigate the genotoxic effects of lasiodiplodan, and its protective activity against DNA damage induced by doxorubicin (DXR) and its impact on the expression of genes associated with DNA damage and inflammatory response pathways. Therefore, Wistar rats were treated (15 days) orally with LS (5.0; 10 and 20mg/kg bw) alone and in combination with DXR (15mg/kg bw; administrated intraperitoneally on 14th day) as well as their respective controls: distilled water and DXR. Monitoring of DNA damage was assessed by comet and micronucleus (MN) assays and gene expression was evaluated by PCR-Arrays. Treatments with LS alone did not induce disturbances on DNA; when LS was given in combination with DXR, comet and MN formations were reduced to those found in the respective controls. Moreover, LS was able to reduce the disturbances on gene expressions induced by DXR treatment, since the animals that receive LS associated with DXR showed no alteration in the expression of genes related to DNA damage response. Also, DXR induced several up- and down-regulation of several genes associated to inflammatory process, while the animals that received LS+DXR had their gene expression patterns similar to those found in the control group. In conclusion, our results showed that LS did not induce disturbances on DNA stability and significantly reduce the DNA damage and inflammation caused by DXR exposure. In addition, we give further information concerning the molecular mechanisms associated to LS protective effects which seems to be a promising nutraceutical with chemopreventive potential.