Lívia Cristina Hernandes
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lívia Cristina Hernandes.
Food and Chemical Toxicology | 2012
Alexandre Ferro Aissa; Maria de Lourdes Pires Bianchi; Juliana Carvalho Ribeiro; Lívia Cristina Hernandes; Adelia Ferreira de Faria; Adriana Zerlotti Mercadante; Lusânia Maria Greggi Antunes
β-Carotene (BC) is one of the natural pigments that is most commonly added to food; however, the utilization of BC is limited due to its instability. Microencapsulation techniques are commonly used because they can protect the microencapsulated material from oxidization. Nevertheless, the properties of the encapsulated compounds must be studied. We compared the antigenotoxic potential of pure and microencapsulated β-carotene (mBC) in Wistar rats. Two doses of BC or mBC (2.5 or 5.0 mg/kg) were administered by gavage over a period of 14 days. The final gavage was followed by an injection of doxorubicin (DXR). After 24h the animals were euthanized. The micronucleus test results showed that when both mBC and DXR were given, only the higher dose was antigenotoxic. The results of the comet assay show that when given in association with DXR, mBC had protective effects in the liver. The differences between the results obtained with BC and mBC suggest that possibly the carotenoid biodisponibility was modified by the process of microencapsulation. In conclusion, mBC does not lose its protective properties, but higher doses must be used to observe antigenotoxic effects. This is the first time that the genotoxicity and antigenotoxicity of a microencapsulated compound was evaluated in vivo.
Genetics and Molecular Biology | 2012
Mara Ribeiro Almeida; Joana Darc Castania Darin; Lívia Cristina Hernandes; Mônica Freiman de Souza Ramos; Lusânia Maria Greggi Antunes; Osvaldo de Freitas
Copaiba oil-resin, extracted from the trunk of Copaifera, and traditionally used in folk medicine in the treatment of various disorders, has been shown to be an effective antiinflamatory, antitumor, antitetanus, antiseptic and anti-blenorrhagea agent. As, there are few studies evaluating its genotoxicity, this aspect of the commercial oil-resin, and its volatile and resinous fractions, were evaluated in mice by comet assay and micronucleus (MN) test. A single dose of oil resin, volatile or resin fractions (500; 1,000 or 2,000 mg/kg b.w.) was administered by gavage. The chemical compositions of Copaiba oil resin and its fractions was analyzed by gas chromatography. According to comet assaying, treatment with either one did not increase DNA damage, and as to MN testing, there was no alteration in the incidence of micronucleated polychromatic erythrocytes. Chromatographic analysis of the oil-resin itself revealed sesquiterpenes, diterpenic carboxylic acid methyl esters and high levels of β-caryophyllene. Thus, it can be assumed that the oil resin and volatile and resinous fractions from the commercial product are not genotoxic or mutagenic.
Food and Chemical Toxicology | 2013
Alexandre Ferro Aissa; Tarsila Daysy Ursula Hermogenes Gomes; Mara Ribeiro Almeida; Lívia Cristina Hernandes; Joana Darc Castania Darin; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
Inadequate nutrient intake can influence the genome. Since methionine is an essential amino acid that may influence DNA integrity due to its role in the one-carbon metabolism pathway, we were interested in whether methionine imbalance can lead to genotoxic events. Adult female Swiss mice were fed a control (0.3% dl-methionine), methionine-supplemented (2.0% DL-methionine) or methionine-deficient (0% DL-methionine) diet over a 10-week period. Chromosomal damage was assessed in peripheral blood using a micronucleus test, and DNA damage was assessed in the liver, heart and peripheral blood tissues using a comet assay. The mRNA expression of the mismatch repair genes Mlh1 and Msh2 was analyzed in the liver. The frequency of micronucleus in peripheral blood was increased by 122% in the methionine-supplemented group (p<0.05). The methionine-supplemented diet did not induce DNA damage in the heart and liver tissues, but it increased DNA damage in the peripheral blood. The methionine-deficient diet reduced basal DNA damage in liver tissue. This reduction was correlated with decreased mRNA expression of Msh2. Our results demonstrate that methionine has a tissue-specific effect because methionine-supplemented diet induced both chromosomal and DNA damage in peripheral blood while the methionine-deficient diet reduced basal DNA damage in the liver.
Journal of Toxicology and Environmental Health | 2016
Eloisa Silva de Paula; Maria Fernanda Hornos Carneiro; Denise Grotto; Lívia Cristina Hernandes; Lusânia Maria Greggi Antunes; Fernando Barbosa
ABSTRACT This study investigates the potential beneficial effects of niacin (NA; vitamin B3) supplementation in rats chronically exposed to methylmercury (MeHg). Animals were randomly assigned to one of 4 groups (n = 6): Group I, control, received distilled water by gavage; Group II, received MeHg (100 µg/kg/d) by gavage; Group III, received NA (50 mg/kg/d) in drinking water; Group IV, received MeHg (100 µg/kg/d) by gavage + NA (50 mg/kg/d) in drinking water. Biochemical parameters levels of glucose, triglycerides, total cholesterol and fractions, and enzyme activities aspartate transaminase (AST) and alanine transaminase (ALT) were determined. Further, oxidative stress markers activity of glutathione peroxidase (GPx) and catalase (CAT) activity, as well as levels of reduced glutathione (GSH), malondialdehyde (MDA), and nitric oxide, were examined, and the comet assay was performed, using blood/plasma. Hg levels were measured in blood, brain, and kidneys of animals. Our results demonstrated that NA reduced adverse effects produced by MeHg. The mechanism underlying these effects appears to be related to the intrinsic antioxidant potential of NA. Considering the beneficial effects attributed to NA following MeHg exposure and that fish are the main source of both NA and MeHg, future studies need to evaluate the potential counteractive effect of NA against the adverse consequences of MeHg exposure in fish-eating populations.
International Journal of Biological Macromolecules | 2018
A.R.T. Machado; Alexandre Ferro Aissa; Diego Luis Ribeiro; Lívia Cristina Hernandes; Carla da Silva Machado; Maria de Lourdes Pires Bianchi; Suely V. Sampaio; Lusânia Maria Greggi Antunes
Colorectal carcinoma is one of the most common cancers in adults. As chemotherapy, the first-choice treatment for colorectal carcinoma, is often infeasible due to acquired tumor resistance and several adverse effects, it is important to discover and explore new molecules with better therapeutic action. Snake venom toxins have shown promising results with high cytotoxicity against tumor cells, but their mechanisms of action remain unclear. Here we examined how BjussuLAAO-II, an L-amino acid oxidase isolated from Bothrops jararacussu snake venom, exerts cytotoxicity towards colorectal adenocarcinoma human cells (Caco-2) and human umbilical vein endothelial cell line (HUVEC). A 24-h treatment with BjussuLAAO-II at 0.25 - 5.00 μg/mL diminished cell viability by decreasing (i) mitochondrial activity, assessed by reduction of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and resazurin; (ii) the activity of acid phosphatases; and (iii) lysosomal function, assessed by neutral red uptake. BjussuLAAO-II also increased intracellular levels of reactive oxygen species and DNA damage, as assessed by fluorescence and the comet assay, respectively. BjussuLAAO-II altered the expression of cell proliferation-related genes, as determined by RT-qPCR: it elevated the expression of the inflammatory cytokine genes TNF and IL6, and lowered the expression of the apoptotic-related genes BAX, BCL2, and RELA. Therefore, BjussuLAAO-II induces Caco-2 cells death by acting on multiple intracellular targets, providing important data for further studies to assess whether these effects are seen in both tumor and normal cells, with the aim of selecting this drug for possible therapeutic purposes in the future.
Molecular Nutrition & Food Research | 2018
Mariana Giaretta Mathias; Carolina de Almeida Coelho-Landell; Marie-Pier Scott-Boyer; Sébastien Lacroix; Melissa J. Morine; Roberta Garcia Salomão; Roseli Borges Donegá Toffano; Maria Olímpia Ribeiro do Vale Almada; Joyce Moraes Camarneiro; Elaine Hillesheim; Tamiris Trevisan de Barros; José Simon Camelo-Junior; Esther Campos Giménez; Karine Redeuil; Alexandre Goyon; Emmanuelle Bertschy; Antoine Lévèques; Jean-Marie Oberson; Catherine Giménez; Jérôme Carayol; Martin Kussmann; Patrick Descombes; Slyviane Métairon; Colleen Fogarty Draper; Nelly Conus; Sara Colombo Mottaz; Giovanna Zambianchi Corsini; Stephanie Kazu Brandão Myoshi; Mariana Mendes Muniz; Lívia Cristina Hernandes
Scope Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. Methods and results A 6‐week multivitamin/mineral intervention is conducted in 9–13 year olds. Participants (136) are (i) their own control (n‐of‐1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6‐week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. Conclusions The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2016
Carla da Silva Machado; Vinicius Paula Venancio; Alexandre Ferro Aissa; Lívia Cristina Hernandes; Michela Bianchi de Mello; José Eduardo Cavalcanti Del Lama; Cleni Mara Marzocchi-Machado; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
Deficiency of vitamin D3, a lipophilic micronutrient, plays a role in the development of some chronic diseases. Vitamin D3 deficiency affects 25-50% of the human population and has been associated with increased risk for development of hypertension. DNA damage induced by reactive oxygen species (ROS) occurs more often in hypertensive than in normotensive individuals, and vitamin D3 status can influence this relationship. The aim of this study was to evaluate whether a diet supplemented with (10,000 IU/kg) or deficient in (0 IU/kg) vitamin D3, compared to a vitamin D3 control diet (1000 IU/kg), would modulate DNA damage and ROS production in spontaneously hypertensive rats (SHR) and normotensive control Wistar-Kyoto (WKY) rats after 12 weeks of treatment. ROS production was assessed by measuring the oxidative burst of neutrophils. DNA damage was evaluated using the comet assay in peripheral blood and the micronucleus test in bone marrow and peripheral blood. Vitamin D3 supplementation did not induce DNA damage and did not change neutrophil ROS production in SHR and WKY rats. Vitamin D3 deficiency induced neutrophil ROS production and a high frequency of micronucleus formation in the bone marrow and peripheral blood of SHR rats only, and induced DNA damage (comet) in peripheral blood of both SHR and WKY rats. In conclusion, vitamin D3 deficiency showed a more pronounced effect on hypertensive animals. Population studies are needed to test whether this relationship also exists in humans.
Toxicology in Vitro | 2016
M. Malini; M.S. Camargo; Lívia Cristina Hernandes; C.G. Vargas-Rechia; Eliana Aparecida Varanda; A.M. Barbosa; R.F.H. Dekker; Silvia Tamie Matsumoto; Lusânia Maria Greggi Antunes; Ilce Mara de Syllos Cólus
Carbohydrate biopolymers of fungal-origin are an important natural resource in the search for new bioagents with therapeutic and nutraceutical potential. In this study the mutagenic, genotoxic, antigenotoxic and antioxidant properties of the fungal exopolysaccharide botryosphaeran, a (1→3)(1→6)-β-D-glucan, from Botryosphaeria rhodina MAMB-05, was evaluated. The mutagenicity was assessed at five concentrations in Salmonella typhimurium by the Ames test. Normal and tumor (Jurkat cells) human T lymphocyte cultures were used to evaluate the genotoxicity and antigenotoxicity (Comet assay) of botryosphaeran alone and in combination with the mutagen methyl methanesulfonate (MMS). The ability of botryosphaeran to reduce the production of reactive oxygen and nitrogen species (RONS) generated by hydrogen peroxide was assessed using the CM-H2DCFDA probe in lymphocyte cultures under different treatment times. None of the evaluated botryosphaeran concentrations were mutagenic in bacteria, nor induced genotoxicity in normal and tumor lymphocytes. Botryosphaeran protected lymphocyte DNA against damage caused by MMS under simultaneous treatment and post-treatment conditions. However, botryosphaeran was not able to reduce the RONS generated by H2O2. Besides the absence of genotoxicity, botryosphaeran exerted a protective effect on human lymphocytes against genotoxic damage caused by MMS. These results are important in the validation of botryosphaeran as a therapeutic agent targeting health promotion.
Journal of Toxicology and Environmental Health | 2017
Alexandre Ferro Aissa; Cátia Lira do Amaral; Vinicius Paula Venancio; Carla da Silva Machado; Lívia Cristina Hernandes; Patrick Wellington da Silva Santos; Rui Curi; Maria de Lourdes Pires Bianchi; Lusânia Maria Greggi Antunes
ABSTRACT Some important environmental factors that influence the development of cardiovascular diseases (CVD) include tobacco, excess alcohol, and unhealthy diet. Methionine obtained from the diet participates in the synthesis of DNA, proteins, lipids and affects homocysteine levels, which is associated with the elevated risk for CVD development. Therefore, the aim of this study was to investigate the manner in which dietary methionine might affect cellular mechanisms underlying CVD occurrence. Swiss albino mice were fed either control (0.3% DL-methionine), methionine-supplemented (2% DL-methionine), or a methionine-deprived diet (0% DL-methionine) over a 10-week period. The parameters measured included plasma homocysteine concentrations, oxidative stress by reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, levels of inflammatory cytokines IL-1ß, TNF-α, and IL-6, as well as expression of genes associated with CVD. The levels of apolipoprotein A5 (APOA5), a regulator of plasma triglycerides, were measured. The methionine-supplemented diet increased oxidative stress by lowering the GSH/GSSG ratio in heart tissues and decreased expression of the genes Apob, Ctgf, Serpinb2, Spp1, Il1b, and Sell, but elevated expression of Thbs4, Tgfb2, Ccr1, and Vegfa. Methionine-deprived diet reduced expression of Col3a1, Cdh5, Fabp3, Bax, and Hbegf and increased expression of Sell, Ccl5, Itga2, Birc3, Msr1, Bcl2a1a, Il1r2, and Selp. Methionine-deprived diet exerted pro-inflammatory consequences as evidenced by elevated levels of cytokines IL-1ß, TNF-α, and IL-6 noted in liver. Methionine-supplemented diet increased hepatic IL-6 and cardiac TNF-α. Both methionine supplementation and deprivation lowered hepatic levels of APOA5. In conclusion, data demonstrated that a methionine-supplemented diet modulated important biological processes associated with high risk of CVD development.
Toxicology in Vitro | 2016
Gabriel Brolio Pavão; Vinícius de Paula Venâncio; Ana Lígia Leandrini de Oliveira; Lívia Cristina Hernandes; Mara Ribeiro Almeida; Lusânia Maria Greggi Antunes; Hosana M. Debonsi
Phomoxanthone A (PhoA) is a compound isolated from the endophytic fungus Phomopsis longicolla, associated with marine algae Bostrychia radicans. Although this metabolite was previously described regarding its high biological potential, there are no reports concerning the effects of this compound on DNA integrity. This study aimed to evaluate, in lymphocytes and promyelocytic leukemia HL60 cells, the cytotoxicity of this compound through MTT and neutral red (NR) assays, as well as its genotoxicity and mutagenicity by alkaline comet assay and cytokinesis-block micronucleus cytome assay (CBMN-Cyt), respectively. Cells were treated with PhoA concentrations ranging from 0.01 to 100.0μg/mL, and the results show that this molecule did not exhibit cytotoxicity, genotoxicity or mutagenicity in lymphocytes at any tested concentration. Furthermore, PhoA was highly cytotoxic, genotoxic and mutagenic to HL60 cells, establishing a differential response of this natural product in normal and cancer cells. PhoA was highly selective towards HL60 compared to lymphocytes, causing no damage in the latter cell line, suggesting that this compound could be a promising compound in antitumoral drug development.