Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Hainard is active.

Publication


Featured researches published by Alexandre Hainard.


BMC Bioinformatics | 2011

pROC: an open-source package for R and S+ to analyze and compare ROC curves

Xavier Arnaud Robin; Natacha Turck; Alexandre Hainard; Natalia Tiberti; Frédérique Lisacek; Jean-Charles Sanchez; Markus Müller

BackgroundReceiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface.ResultsWith data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC.ConclusionspROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.


Analytical Chemistry | 2008

Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags.

Loïc Dayon; Alexandre Hainard; Virginie Licker; Natacha Turck; Karsten Kuhn; Denis F. Hochstrasser; and Pierre R. Burkhard; Jean-Charles Sanchez

A new 6-plex isobaric mass tagging technology is presented, and proof of principle studies are carried out using standard protein mixtures and human cerebrospinal fluid (CSF) samples. The Tandem Mass Tags (TMT) comprise a set of structurally identical tags which label peptides on free amino-terminus and epsilon-amino functions of lysine residues. During MS/MS fragmentation, quantification information is obtained through the losses of the reporter ions. After evaluation of the relative quantification with the 6-plex version of the TMT on a model protein mixture at various concentrations, the quantification of proteins in CSF samples was performed using shotgun methods. Human postmortem (PM) CSF was taken as a model of massive brain injury and comparison was carried out with antemortem (AM) CSF. After immunoaffinity depletion, triplicates of AM and PM CSF pooled samples were reduced, alkylated, digested by trypsin, and labeled, respectively, with the six isobaric variants of the TMT (with reporter ions from m/z = 126.1 to 131.1 Th). The samples were pooled and fractionated by SCX chromatography. After RP-LC separation, peptides were identified and quantified by MS/MS analysis with MALDI TOF/TOF and ESI-Q-TOF. The concentration of 78 identified proteins was shown to be clearly increased in PM CSF samples compared to AM. Some of these proteins, like GFAP, protein S100B, and PARK7, have been previously described as brain damage biomarkers, supporting the PM CSF as a valid model of brain insult. ELISA for these proteins confirmed their elevated concentration in PM CSF. This work demonstrates the validity and robustness of the tandem mass tag (TMT) approach for quantitative MS-based proteomics.


Journal of Proteome Research | 2011

General statistical modeling of data from protein relative expression isobaric tags.

Florian P. Breitwieser; André C. Müller; Loïc Dayon; Thomas Köcher; Alexandre Hainard; Peter Pichler; Ursula Schmidt-Erfurth; Giulio Superti-Furga; Jean-Charles Sanchez; Karl Mechtler; Keiryn L. Bennett; Jacques Colinge

Quantitative comparison of the protein content of biological samples is a fundamental tool of research. The TMT and iTRAQ isobaric labeling technologies allow the comparison of 2, 4, 6, or 8 samples in one mass spectrometric analysis. Sound statistical models that scale with the most advanced mass spectrometry (MS) instruments are essential for their efficient use. Through the application of robust statistical methods, we developed models that capture variability from individual spectra to biological samples. Classical experimental designs with a distinct sample in each channel as well as the use of replicates in multiple channels are integrated into a single statistical framework. We have prepared complex test samples including controlled ratios ranging from 100:1 to 1:100 to characterize the performance of our method. We demonstrate its application to actual biological data sets originating from three different laboratories and MS platforms. Finally, test data and an R package, named isobar, which can read Mascot, Phenyx, and mzIdentML files, are made available. The isobar package can also be used as an independent software that requires very little or no R programming skills.


PLOS Neglected Tropical Diseases | 2009

A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients

Alexandre Hainard; Natalia Tiberti; Xavier Arnaud Robin; Veerle Lejon; Dieudonné Mumba Ngoyi; Enock Matovu; John Enyaru; Catherine Fouda; Joseph M. Ndung'u; Frédérique Lisacek; Markus Müller; Natacha Turck; Jean-Charles Sanchez

Background Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite. Methods Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays. Results CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity. Conclusion This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.


PLOS ONE | 2012

Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness.

Natalia Tiberti; Alexandre Hainard; Veerle Lejon; Bertrand Courtioux; Enock Matovu; John Enyaru; Xavier Arnaud Robin; Natacha Turck; Krister Kristensson; Dieudonné Mumba Ngoyi; Gedeao Vatunga; Sanjeev Krishna; Philippe Büscher; Sylvie Bisser; Joseph Mathu Ndung’u; Jean-Charles Sanchez

Background Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients. Methods and Findings Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/µL) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging. Conclusions This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination.


Molecular & Cellular Proteomics | 2010

Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis

Natalia Tiberti; Alexandre Hainard; Veerle Lejon; Xavier Arnaud Robin; Dieudonné Mumba Ngoyi; Natacha Turck; Enock Matovu; John Enyaru; Joseph M. Ndung'u; Alexander Scherl; Loïc Dayon; Jean-Charles Sanchez

Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients.


Clinical and translational medicine | 2013

New biomarkers for stage determination in Trypanosoma brucei rhodesiense sleeping sickness patients

Natalia Tiberti; Enock Matovu; Alexandre Hainard; John Enyaru; Veerle Lejon; Xavier Arnaud Robin; Natacha Turck; Dieudonné Mumba Ngoyi; Sanjeev Krishna; Sylvie Bisser; Bertrand Courtioux; Philippe Büscher; Krister Kristensson; Joseph M. Ndung'u; Jean-Charles Sanchez

Accurate stage determination is crucial in the choice of treatment for patients suffering from sleeping sickness, also known as human African trypanosomiasis (HAT). Current staging methods, based on the counting of white blood cells (WBC) and the detection of parasites in the cerebrospinal fluid (CSF) have limited accuracy. We hypothesized that immune mediators reliable for staging T. b. gambiense HAT could also be used to stratify T. b. rhodesiense patients, the less common form of HAT.A population comprising 85 T. b. rhodesiense patients, 14 stage 1 (S1) and 71 stage 2 (S2) enrolled in Malawi and Uganda, was investigated. The CSF levels of IgM, MMP-9, CXCL13, CXCL10, ICAM-1, VCAM-1, neopterin and B2MG were measured and their staging performances evaluated using receiver operating characteristic (ROC) analyses.IgM, MMP-9 and CXCL13 were the most accurate markers for stage determination (partial AUC 88%, 86% and 85%, respectively). The combination in panels of three molecules comprising CXCL13-CXCL10-MMP-9 or CXCL13-CXCL10-IgM significantly increased their staging ability to partial AUC 94% (p value < 0.01).The present study highlighted new potential markers for stage determination of T. b. rhodesiense patients. Further investigations are needed to better evaluate these molecules, alone or in panels, as alternatives to WBC to make reliable choice of treatment.


Expert Review of Proteomics | 2009

Bioinformatics for protein biomarker panel classification: what is needed to bring biomarker panels into in vitro diagnostics?

Xavier Arnaud Robin; Natacha Turck; Alexandre Hainard; Frédérique Lisacek; Jean-Charles Sanchez; Markus Müller

A large number of biomarkers have been discovered over the past few years using proteomics techniques. Unfortunately, most of them are neither specific nor sensitive enough to be translated into in vitro diagnostics and routine clinical practice. From this observation, the idea of combining several markers into panels to improve clinical performances has emerged. In this article, we present a discussion of the bioinformatics aspects of biomarker panels and the concomitant challenges, including high dimensionality and low patient number and reproducibility.


Tropical Medicine & International Health | 2011

Matrix metalloproteinase‐9 and intercellular adhesion molecule 1 are powerful staging markers for human African trypanosomiasis

Alexandre Hainard; Natalia Tiberti; Xavier Arnaud Robin; Dieudonné Mumba Ngoyi; Enock Matovu; John Enyaru; Markus Müller; Natacha Turck; Joseph Mathu Ndung’u; Veerle Lejon; Jean-Charles Sanchez

Objectives  A critical step before treatment of human African trypanosomiasis (HAT) is the correct staging of the disease. As late stage is established when trypanosomes cross the blood–brain barrier and invade the central nervous system, we hypothesized that matrix metalloproteinases and cell adhesion molecules could indicate, alone or in combination, the disease progression from the first to the second stage of HAT.


Proteomics Clinical Applications | 2014

Exploring the human tear fluid: Discovery of new biomarkers in multiple sclerosis

Cindy Salvisberg; Nadja Tajouri; Alexandre Hainard; Pierre Burkhard; Patrice H. Lalive; Natacha Turck

Multiple sclerosis is the first cause of progressive neurological disability among young adults living in Western countries. Its diagnosis is mostly based on clinical evaluation, neuroimaging, and in some cases cerebrospinal fluid (CSF) analysis, but no definitive diagnostic test exists. We proposed here that the exploration of tears from multiple sclerosis patients could lead to the discovery of new biomarkers.

Collaboration


Dive into the Alexandre Hainard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veerle Lejon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Lisacek

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Markus Müller

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Ndung'u

Foundation for Innovative New Diagnostics

View shared research outputs
Researchain Logo
Decentralizing Knowledge