Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natacha Turck is active.

Publication


Featured researches published by Natacha Turck.


BMC Bioinformatics | 2011

pROC: an open-source package for R and S+ to analyze and compare ROC curves

Xavier Arnaud Robin; Natacha Turck; Alexandre Hainard; Natalia Tiberti; Frédérique Lisacek; Jean-Charles Sanchez; Markus Müller

BackgroundReceiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+ that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-oriented and flexible interface.ResultsWith data previously imported into the R or S+ environment, the pROC package builds ROC curves and includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows how to perform a typical ROC analysis with pROC.ConclusionspROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation. pROC is available in two versions: in the R programming language or with a graphical user interface in the S+ statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also distributed through the CRAN and CSAN public repositories, facilitating its installation.


Analytical Chemistry | 2008

Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags.

Loïc Dayon; Alexandre Hainard; Virginie Licker; Natacha Turck; Karsten Kuhn; Denis F. Hochstrasser; and Pierre R. Burkhard; Jean-Charles Sanchez

A new 6-plex isobaric mass tagging technology is presented, and proof of principle studies are carried out using standard protein mixtures and human cerebrospinal fluid (CSF) samples. The Tandem Mass Tags (TMT) comprise a set of structurally identical tags which label peptides on free amino-terminus and epsilon-amino functions of lysine residues. During MS/MS fragmentation, quantification information is obtained through the losses of the reporter ions. After evaluation of the relative quantification with the 6-plex version of the TMT on a model protein mixture at various concentrations, the quantification of proteins in CSF samples was performed using shotgun methods. Human postmortem (PM) CSF was taken as a model of massive brain injury and comparison was carried out with antemortem (AM) CSF. After immunoaffinity depletion, triplicates of AM and PM CSF pooled samples were reduced, alkylated, digested by trypsin, and labeled, respectively, with the six isobaric variants of the TMT (with reporter ions from m/z = 126.1 to 131.1 Th). The samples were pooled and fractionated by SCX chromatography. After RP-LC separation, peptides were identified and quantified by MS/MS analysis with MALDI TOF/TOF and ESI-Q-TOF. The concentration of 78 identified proteins was shown to be clearly increased in PM CSF samples compared to AM. Some of these proteins, like GFAP, protein S100B, and PARK7, have been previously described as brain damage biomarkers, supporting the PM CSF as a valid model of brain insult. ELISA for these proteins confirmed their elevated concentration in PM CSF. This work demonstrates the validity and robustness of the tandem mass tag (TMT) approach for quantitative MS-based proteomics.


Journal of Thrombosis and Haemostasis | 2009

Cardiac biomarkers for risk stratification in non-massive pulmonary embolism: a multicenter prospective study

Nicolas Vuilleumier; G. Le Gal; Franck Verschuren; Arnaud Perrier; Henri Bounameaux; Natacha Turck; Jean-Charles Sanchez; Noury Mensi; Thomas V. Perneger; Denis F. Hochstrasser; Marc Philip Righini

Summary.  Background: Troponins (cTnI and cTnT), N‐terminal pro‐Brain Natriuretic Peptide (NT‐proBNP), myoglobin, heart‐type fatty acid‐binding protein (H‐FABP) and fibrin D‐Dimer are emergent candidates for risk stratification in pulmonary embolism (PE). Objective: To compare the respective prognostic values of biomarker with non‐massive PE to predict an adverse outcome at 3 months. Patients/Methods: One hundred and forty‐six consecutive patients with non‐massive PE were included in this multicenter prospective study. The combined outcome consisted of intensive care monitoring on admission, death or hospitalization attributable to either a PE‐related complication [defined by PE/deep vein thrombosis (DVT) relapse or major bleeding under anticoagulation] or to dyspnoea with or without chest pain during follow‐up. Results: The outcome was met in 12% of patients. In univariate analysis, a NT‐proBNP level above 300 pg/ml was the strongest predictor of unfavorable outcome with an odds ratio (OR) of 15.8 [95% confidence interval (CI): 2.05–122). ORs for the other variables were: 8.0 for D‐dimer >2000 ng/ml (95% CI: 1.1–64), 4.7 for H‐FABP >6ng/ml (95% CI:1.5–14.8), 3.5 for cTnI >0.09 ng/ml (95% CI:1.2–9.7), 3.4 for myoglobin >70 ng/ml (95% CI:0.9–12.2). Receiver operating curve (ROC) analysis indicated that NT‐proBNP was the best predictor [area under the curve (AUC) 0.84; 95%CI: 0.76–0.92; P < 0.0001] with a negative predictive value of 100% (95% CI: 91–100) at 300 pg/ml. At that cut‐off, the true negative rate for NT‐proBNP was 40%. In multivariate analysis, NT‐proBNP was the only significant independent predictors. Conclusions: NT‐proBNP appears to be a good risk stratification marker in identifying low‐risk patients with non‐massive PE who could be treated in an outpatient setting.


PLOS Neglected Tropical Diseases | 2009

A combined CXCL10, CXCL8 and H-FABP panel for the staging of human African trypanosomiasis patients

Alexandre Hainard; Natalia Tiberti; Xavier Arnaud Robin; Veerle Lejon; Dieudonné Mumba Ngoyi; Enock Matovu; John Enyaru; Catherine Fouda; Joseph M. Ndung'u; Frédérique Lisacek; Markus Müller; Natacha Turck; Jean-Charles Sanchez

Background Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite. Methods Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays. Results CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity. Conclusion This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.


Proteomics | 2014

Proteomic analysis of human substantia nigra identifies novel candidates involved in Parkinson's disease pathogenesis.

Virginie Licker; Natacha Turck; Eniko Veronika Kovari; Karim Burkhardt; Mélanie Cote; Maria Surini-Demiri; Johannes Alexander Lobrinus; Jean-Charles Sanchez; Pierre Burkhard

Parkinsons disease (PD) pathology spreads throughout the brain following a region‐specific process predominantly affecting the substantia nigra (SN) pars compacta. SN exhibits a progressive loss of dopaminergic neurons responsible for the major cardinal motor symptoms, along with the occurrence of Lewy bodies in the surviving neurons. To gain new insights into the underlying pathogenic mechanisms in PD, we studied postmortem nigral tissues dissected from pathologically confirmed PD cases (n = 5) and neurologically intact controls (n = 8). Using a high‐throughput shotgun proteomic strategy, we simultaneously identified 1795 proteins with concomitant quantitative data. To date, this represents the most extensive catalog of nigral proteins. Of them, 204 proteins displayed significant expression level changes in PD patients versus controls. These were involved in novel or known pathogenic processes including mitochondrial dysfunction, oxidative stress, or cytoskeleton impairment. We further characterized four candidates that might be relevant to PD pathogenesis. We confirmed the differential expression of ferritin‐L and seipin by Western blot and demonstrated the neuronal localization of gamma glutamyl hydrolase and nebulette by immunohistochemistry. Our preliminary findings suggest a role for nebulette overexpression in PD neurodegeneration, through mechanisms that may involve cytoskeleton dynamics disruption. All MS data have been deposited in the ProteomeXchange with identifier PXD000427 (http://proteomecentral.proteomexchange.org/dataset/PXD000427).


Journal of Proteome Research | 2011

Brain extracellular fluid protein changes in acute stroke patients

Loïc Dayon; Natacha Turck; Teresa Garcí-Berrocoso; Nadia Walter; Pierre Burkhard; Anna Vilalta; Juan Sahuquillo; Joan Montaner; Jean-Charles Sanchez

In vivo human brain extracellular fluids (ECF) of acute stroke patients were investigated to assess the changes in protein levels associated with ischemic damages. Microdialysates (MDs) from the infarct core (IC), the penumbra (P), and the unaffected contralateral (CT) brain regions of patients suffering an ischemic stroke (n = 6) were compared using a shotgun proteomic approach based on isobaric tagging and mass spectrometry. Quantitative analysis showed 53 proteins with increased amounts in the IC or P with respect to the CT samples. Glutathione S-transferase P (GSTP1), peroxiredoxin-1 (PRDX1), and protein S100-B (S100B) were further assessed with ELISA on the blood of unrelated control (n = 14) and stroke (n = 14) patients. Significant increases of 8- (p = 0.0002), 20- (p = 0.0001), and 11-fold (p = 0.0093) were found, respectively. This study highlights the value of ECF as an efficient source to further discover blood stroke markers.


Analytical Chemistry | 2010

Isobaric Tagging-Based Selection and Quantitation of Cerebrospinal Fluid Tryptic Peptides with Reporter Calibration Curves

Loïc Dayon; Natacha Turck; Stefan Kienle; Peter Schulz-Knappe; Denis F. Hochstrasser; Alexander Scherl; Jean-Charles Sanchez

In the past few years, mass spectrometry (MS) has emerged as an efficient tool for the multiplexed peptide and protein concentration determination by isotope dilution. Despite the growing use of isobaric tagging to perform relative quantitation for the discovery of potential biomarkers in biological fluids, no real application has so far been presented for their absolute quantitation. Isobaric tandem mass tags (TMTs) were used herein for the selection and quantitation of tryptic peptides derived from brain damage related proteins in cerebrospinal fluid (CSF). Proteotypic tryptic peptide analogues were synthesized, prepared in four reference amounts, differentially labeled with four isobaric TMTs with reporter-ions at m/z = 128.1, 129.1, 130.1, and 131.1, and mixed with CSF sample previously labeled with TMT 126.1. Off-gel electrophoresis (OGE) was used as first-dimension separation of the pooled sample. The resulting fractions were analyzed with reversed-phase liquid chromatography (RP-LC) tandem mass spectrometry (MS/MS), using tandem time-of-flight (TOF/TOF) and hybrid linear ion trap-orbitrap (LTQ-OT) instruments. Under collision-induced dissociation (CID) or higher-energy C-trap dissociation (HCD), the release of the reporter fragments from the TMT-labeled peptide standards provided an internal calibration curve to assess the concentration of these peptides in the CSF. This tool also allowed identifying selectively these peptides in CSF as only the targeted peptides showed specific fragmentation pattern in the TMT reporter-ion zone of the tandem mass spectra. Assays for the concentration measurements of peptides from PARK7, GSTP1, NDKA, and S100B proteins in CSF were further characterized using this novel, efficient, and straightforward approach.


PLOS ONE | 2012

Cerebrospinal fluid neopterin as marker of the meningo-encephalitic stage of Trypanosoma brucei gambiense sleeping sickness.

Natalia Tiberti; Alexandre Hainard; Veerle Lejon; Bertrand Courtioux; Enock Matovu; John Enyaru; Xavier Arnaud Robin; Natacha Turck; Krister Kristensson; Dieudonné Mumba Ngoyi; Gedeao Vatunga; Sanjeev Krishna; Philippe Büscher; Sylvie Bisser; Joseph Mathu Ndung’u; Jean-Charles Sanchez

Background Sleeping sickness, or human African trypanosomiasis (HAT), is a protozoan disease that affects rural communities in sub-Saharan Africa. Determination of the disease stage, essential for correct treatment, represents a key issue in the management of patients. In the present study we evaluated the potential of CXCL10, CXCL13, ICAM-1, VCAM-1, MMP-9, B2MG, neopterin and IgM to complement current methods for staging Trypanosoma brucei gambiense patients. Methods and Findings Five hundred and twelve T. b. gambiense HAT patients originated from Angola, Chad and the Democratic Republic of the Congo (D.R.C.). Their classification as stage 2 (S2) was based on the number of white blood cells (WBC) (>5/µL) or presence of parasites in the cerebrospinal fluid (CSF). The CSF concentration of the eight markers was first measured on a training cohort encompassing 100 patients (44 S1 and 56 S2). IgM and neopterin were the best in discriminating between the two stages of disease with 86.4% and 84.1% specificity respectively, at 100% sensitivity. When a validation cohort (412 patients) was tested, neopterin (14.3 nmol/L) correctly classified 88% of S1 and S2 patients, confirming its high staging power. On this second cohort, neopterin also predicted both the presence of parasites, and of neurological signs, with the same ability as IgM and WBC, the current reference for staging. Conclusions This study has demonstrated that neopterin is an excellent biomarker for staging T. b. gambiense HAT patients. A rapid diagnostic test for detecting this metabolite in CSF could help in more accurate stage determination.


Journal of Proteomics | 2012

Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson's disease.

Virginie Licker; Mélanie Cote; Johannes Alexander Lobrinus; Neftali Rodrigo; Eniko Veronika Kovari; Denis F. Hochstrasser; Natacha Turck; Jean-Charles Sanchez; Pierre Burkhard

Despite decades of intensive investigations, the precise sequence of molecular events and the specific proteins mediating the degenerative process underlying Parkinsons disease (PD) remain unraveled. Proteomic strategies may provide unbiased tools to identify novel candidates and explore original mechanisms involved in PD. Substantia nigra pars compacta (SN) tissue, whose degeneration is the hallmark of PD, was dissected from neuropathologically confirmed PD patients (n=3) and control subjects (n=3), before being submitted to a comparative 2-DE analysis. The present study revealed a subset of neuronal and/or glial proteins that appears to be deregulated in PD and likely to contribute to neurodegeneration. Observed alterations not only consolidate well accepted concepts surrounding PD pathogenesis such as oxidative stress and mitochondrial dysfunction but also point out to novel pathways. Among the latter, cytosolic non specific dipeptidase 2 (CNDP2), a relatively unknown protein not yet reported to be associated with PD pathogenesis, was shown to be increased in the SN of PD patients, as confirmed by Western blot. Immunohistochemical analyses demonstrated the presence of CNDP2 within the cytoplasm of SN dopaminergic neurons. Altogether, our findings support a key role of CNDP2 in PD neurodegeneration, by mechanisms that could involve oxidative stress, protein aggregation or inflammation. This article is part of a Special Issue entitled: Translational Proteomics.


Molecular & Cellular Proteomics | 2010

Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis

Natalia Tiberti; Alexandre Hainard; Veerle Lejon; Xavier Arnaud Robin; Dieudonné Mumba Ngoyi; Natacha Turck; Enock Matovu; John Enyaru; Joseph M. Ndung'u; Alexander Scherl; Loïc Dayon; Jean-Charles Sanchez

Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients.

Collaboration


Dive into the Natacha Turck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veerle Lejon

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Lisacek

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge