Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Melnikov is active.

Publication


Featured researches published by Alexandre Melnikov.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes

Adrian L. Sanborn; Suhas S.P. Rao; Su-Chen Huang; Neva C. Durand; Miriam Huntley; Andrew Jewett; Ivan D. Bochkov; Dharmaraj Chinnappan; Ashok Cutkosky; Jian Li; Kristopher P. Geeting; Andreas Gnirke; Alexandre Melnikov; Doug McKenna; Elena K. Stamenova; Eric S. Lander; Erez Lieberman Aiden

Significance When the human genome folds up inside the cell nucleus, it is spatially partitioned into numerous loops and contact domains. How these structures form is unknown. Here, we show that data from high-resolution spatial proximity maps are consistent with a model in which a complex, including the proteins CCCTC-binding factor (CTCF) and cohesin, mediates the formation of loops by a process of extrusion. Contact domains form as a byproduct of this process. The model accurately predicts how the genome will fold, using only information about the locations at which CTCF is bound. We demonstrate the ability to reengineer loops and domains in a predictable manner by creating highly targeted mutations, some as small as a single base pair, at CTCF sites. We recently used in situ Hi-C to create kilobase-resolution 3D maps of mammalian genomes. Here, we combine these maps with new Hi-C, microscopy, and genome-editing experiments to study the physical structure of chromatin fibers, domains, and loops. We find that the observed contact domains are inconsistent with the equilibrium state for an ordinary condensed polymer. Combining Hi-C data and novel mathematical theorems, we show that contact domains are also not consistent with a fractal globule. Instead, we use physical simulations to study two models of genome folding. In one, intermonomer attraction during polymer condensation leads to formation of an anisotropic “tension globule.” In the other, CCCTC-binding factor (CTCF) and cohesin act together to extrude unknotted loops during interphase. Both models are consistent with the observed contact domains and with the observation that contact domains tend to form inside loops. However, the extrusion model explains a far wider array of observations, such as why loops tend not to overlap and why the CTCF-binding motifs at pairs of loop anchors lie in the convergent orientation. Finally, we perform 13 genome-editing experiments examining the effect of altering CTCF-binding sites on chromatin folding. The convergent rule correctly predicts the affected loops in every case. Moreover, the extrusion model accurately predicts in silico the 3D maps resulting from each experiment using only the location of CTCF-binding sites in the WT. Thus, we show that it is possible to disrupt, restore, and move loops and domains using targeted mutations as small as a single base pair.


Nature Biotechnology | 2012

Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay

Alexandre Melnikov; Anand Murugan; Xiaolan Zhang; Tiberiu Tesileanu; Lili Wang; Peter Rogov; Soheil Feizi; Andreas Gnirke; Curtis G. Callan; Justin B. Kinney; Manolis Kellis; Eric S. Lander; Tarjei S. Mikkelsen

Learning to read and write the transcriptional regulatory code is of central importance to progress in genetic analysis and engineering. Here we describe a massively parallel reporter assay (MPRA) that facilitates the systematic dissection of transcriptional regulatory elements. In MPRA, microarray-synthesized DNA regulatory elements and unique sequence tags are cloned into plasmids to generate a library of reporter constructs. These constructs are transfected into cells and tag expression is assayed by high-throughput sequencing. We apply MPRA to compare >27,000 variants of two inducible enhancers in human cells: a synthetic cAMP-regulated enhancer and the virus-inducible interferon-β enhancer. We first show that the resulting data define accurate maps of functional transcription factor binding sites in both enhancers at single-nucleotide resolution. We then use the data to train quantitative sequence-activity models (QSAMs) of the two enhancers. We show that QSAMs from two cellular states can be combined to design enhancer variants that optimize potentially conflicting objectives, such as maximizing induced activity while minimizing basal activity.


Genome Research | 2013

Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay

Pouya Kheradpour; Jason Ernst; Alexandre Melnikov; Peter Rogov; Wang L; Xiaolan Zhang; Jessica Alston; Tarjei S. Mikkelsen; Manolis Kellis

Genome-wide chromatin annotations have permitted the mapping of putative regulatory elements across multiple human cell types. However, their experimental dissection by directed regulatory motif disruption has remained unfeasible at the genome scale. Here, we use a massively parallel reporter assay (MPRA) to measure the transcriptional levels induced by 145-bp DNA segments centered on evolutionarily conserved regulatory motif instances within enhancer chromatin states. We select five predicted activators (HNF1, HNF4, FOXA, GATA, NFE2L2) and two predicted repressors (GFI1, ZFP161) and measure reporter expression in erythroleukemia (K562) and liver carcinoma (HepG2) cell lines. We test 2104 wild-type sequences and 3314 engineered enhancer variants containing targeted motif disruptions, each using 10 barcode tags and two replicates. The resulting data strongly confirm the enhancer activity and cell-type specificity of enhancer chromatin states, the ability of 145-bp segments to recapitulate both, the necessary role of regulatory motifs in enhancer function, and the complementary roles of activator and repressor motifs. We find statistically robust evidence that (1) disrupting the predicted activator motifs abolishes enhancer function, while silent or motif-improving changes maintain enhancer activity; (2) evolutionary conservation, nucleosome exclusion, binding of other factors, and strength of the motif match are predictive of enhancer activity; (3) scrambling repressor motifs leads to aberrant reporter expression in cell lines where the enhancers are usually inactive. Our results suggest a general strategy for deciphering cis-regulatory elements by systematic large-scale manipulation and provide quantitative enhancer activity measurements across thousands of constructs that can be mined to develop predictive models of gene expression.


Cell | 2016

Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits

Jacob C. Ulirsch; Satish K. Nandakumar; Wang L; Felix C. Giani; Xiaolan Zhang; Peter Rogov; Alexandre Melnikov; Patrick McDonel; Ron Do; Tarjei S. Mikkelsen; Vijay G. Sankaran

Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.


Genome Biology | 2011

Hybrid selection for sequencing pathogen genomes from clinical samples

Alexandre Melnikov; Kevin Galinsky; Peter Rogov; Timothy Fennell; Daria Van Tyne; Carsten Russ; Rachel Daniels; Kayla G. Barnes; James Bochicchio; Daouda Ndiaye; Papa Diogoye Séne; Dyann F. Wirth; Chad Nusbaum; Sarah K. Volkman; Bruce W. Birren; Andreas Gnirke; Daniel E. Neafsey

We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla.


Nucleic Acids Research | 2014

Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes

Alexandre Melnikov; Peter Rogov; Wang L; Andreas Gnirke; Tarjei S. Mikkelsen

Deep mutational scanning has emerged as a promising tool for mapping sequence–activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3′)II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3′)II variants with orthogonal substrate specificities.


Nature Communications | 2016

Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts

Liang Ma; Zehua Chen; Da Wei Huang; Geetha Kutty; Mayumi Ishihara; Honghui Wang; Amr Abouelleil; Lisa R. Bishop; Emma Davey; Rebecca Deng; Xilong Deng; Lin Fan; Giovanna Fantoni; Michael C. Fitzgerald; Emile Gogineni; Jonathan M. Goldberg; Grace Handley; Xiaojun Hu; Charles Huber; Xiaoli Jiao; Joshua Z. Levin; Yueqin Liu; Pendexter Macdonald; Alexandre Melnikov; Castle Raley; Monica Sassi; Brad T. Sherman; Xiaohong Song; Sean Sykes; Bao Tran

Pneumocystis jirovecii is a major cause of life-threatening pneumonia in immunosuppressed patients including transplant recipients and those with HIV/AIDS, yet surprisingly little is known about the biology of this fungal pathogen. Here we report near complete genome assemblies for three Pneumocystis species that infect humans, rats and mice. Pneumocystis genomes are highly compact relative to other fungi, with substantial reductions of ribosomal RNA genes, transporters, transcription factors and many metabolic pathways, but contain expansions of surface proteins, especially a unique and complex surface glycoprotein superfamily, as well as proteases and RNA processing proteins. Unexpectedly, the key fungal cell wall components chitin and outer chain N-mannans are absent, based on genome content and experimental validation. Our findings suggest that Pneumocystis has developed unique mechanisms of adaptation to life exclusively in mammalian hosts, including dependence on the lungs for gas and nutrients and highly efficient strategies to escape both host innate and acquired immune defenses.


Nature Genetics | 2016

Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax

Daniel N. Hupalo; Zunping Luo; Alexandre Melnikov; Patrick L. Sutton; Peter Rogov; Ananias A. Escalante; Andrés F. Vallejo; Sócrates Herrera; Myriam Arévalo-Herrera; Qi Fan; Ying Wang; Liwang Cui; Carmen Lucas; Salomon Durand; Juan F. Sanchez; G. Christian Baldeviano; Andres G. Lescano; Moses Laman; Céline Barnadas; Alyssa E. Barry; Ivo Mueller; James W. Kazura; Alex Eapen; Deena Kanagaraj; Neena Valecha; Marcelo U. Ferreira; Wanlapa Roobsoong; Wang Nguitragool; Jetsumon Sattabonkot; Dionicia Gamboa

Plasmodium vivax is a major public health burden, responsible for the majority of malaria infections outside Africa. We explored the impact of demographic history and selective pressures on the P. vivax genome by sequencing 182 clinical isolates sampled from 11 countries across the globe, using hybrid selection to overcome human DNA contamination. We confirmed previous reports of high genomic diversity in P. vivax relative to the more virulent Plasmodium falciparum species; regional populations of P. vivax exhibited greater diversity than the global P. falciparum population, indicating a large and/or stable population. Signals of natural selection suggest that P. vivax is evolving in response to antimalarial drugs and is adapting to regional differences in the human host and the mosquito vector. These findings underline the variable epidemiology of this parasite species and highlight the breadth of approaches that may be required to eliminate P. vivax globally.


Current protocols in human genetics | 2010

Targeted Exon Sequencing by In‐Solution Hybrid Selection

Brendan Blumenstiel; Kristian Cibulskis; Sheila Fisher; Matthew DeFelice; Andrew Barry; Timothy Fennell; Justin Abreu; Brian Minie; Maura Costello; Geneva Young; Jared Maquire; Andrew Kernytsky; Alexandre Melnikov; Peter Rogov; Andreas Gnirke; Stacey Gabriel

This unit describes a protocol for the targeted enrichment of exons from randomly sheared genomic DNA libraries using an in‐solution hybrid selection approach for sequencing on an Illumina Genome Analyzer II. The steps for designing and ordering a hybrid selection oligo pool are reviewed, as are critical steps for performing the preparation and hybrid selection of an Illumina paired‐end library. Critical parameters, performance metrics, and analysis workflow are discussed. Curr. Protoc. Hum. Genet. 66:18.4.1‐18.4.24


PLOS Neglected Tropical Diseases | 2015

Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

Mary Lynn Baniecki; Aubrey L. Faust; Stephen F. Schaffner; Daniel J. Park; Kevin Galinsky; Rachel Daniels; Elizabeth J. Hamilton; Marcelo U. Ferreira; Nadira D. Karunaweera; David Serre; Peter A. Zimmerman; Juliana M. Sá; Thomas E. Wellems; Lise Musset; Eric Legrand; Alexandre Melnikov; Daniel E. Neafsey; Sarah K. Volkman; Dyann F. Wirth; Pardis C. Sabeti

Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

Collaboration


Dive into the Alexandre Melnikov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wang L

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manolis Kellis

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge