Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel E. Neafsey is active.

Publication


Featured researches published by Daniel E. Neafsey.


Nature Genetics | 2007

A genome-wide map of diversity in Plasmodium falciparum

Sarah K. Volkman; Pardis C. Sabeti; David DeCaprio; Daniel E. Neafsey; Stephen F. Schaffner; Danny A. Milner; Johanna P. Daily; Ousmane Sarr; Daouda Ndiaye; Omar Ndir; Soulyemane Mboup; Manoj T. Duraisingh; Amanda K Lukens; Alan Derr; Nicole Stange-Thomann; Skye Waggoner; Robert C. Onofrio; Liuda Ziaugra; Evan Mauceli; Sante Gnerre; David B. Jaffe; Joanne Zainoun; Roger Wiegand; Bruce W. Birren; Daniel L. Hartl; James E. Galagan; Eric S. Lander; Dyann F. Wirth

Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (π = 1.16 × 10−3) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.


Science | 2015

Extensive introgression in a malaria vector species complex revealed by phylogenomics

Michael Fontaine; James B. Pease; Aaron Steele; Robert M. Waterhouse; Daniel E. Neafsey; Igor V. Sharakhov; Xiaofang Jiang; Andrew Brantley Hall; Flaminia Catteruccia; Evdoxia G. Kakani; Sara N. Mitchell; Yi-Chieh Wu; Hilary A. Smith; R. Rebecca Love; Mara K. N. Lawniczak; Michel A. Slotman; Scott J. Emrich; Matthew W. Hahn; Nora J. Besansky

Introduction The notion that species boundaries can be porous to introgression is increasingly accepted. Yet the broader role of introgression in evolution remains contentious and poorly documented, partly because of the challenges involved in accurately identifying introgression in the very groups where it is most likely to occur. Recently diverged species often have incomplete reproductive barriers and may hybridize where they overlap. However, because of retention and stochastic sorting of ancestral polymorphisms, inference of the correct species branching order is notoriously challenging for recent speciation events, especially those closely spaced in time. Without knowledge of species relationships, it is impossible to identify instances of introgression. Rationale Since the discovery that the single mosquito taxon described in 1902 as Anopheles gambiae was actually a complex of several closely related and morphologically indistinguishable sibling species, the correct species branching order has remained controversial and unresolved. This Afrotropical complex contains the world’s most important vectors of human malaria, owing to their close association with humans, as well as minor vectors and species that do not bite humans. On the basis of ecology and behavior, one might predict phylogenetic clustering of the three highly anthropophilic vector species. However, previous phylogenetic analyses of the complex based on a limited number of markers strongly disagree about relationships between the major vectors, potentially because of historical introgression between them. To investigate the history of the species complex, we used whole-genome reference assemblies, as well as dozens of resequenced individuals from the field. Results We observed a large amount of phylogenetic discordance between trees generated from the autosomes and X chromosome. The autosomes, which make up the majority of the genome, overwhelmingly supported the grouping of the three major vectors of malaria, An. gambiae, An. coluzzii, and An. arabiensis. In stark contrast, the X chromosome strongly supported the grouping of An. arabiensis with a species that plays no role in malaria transmission, An. quadriannulatus. Although the whole-genome consensus phylogeny unequivocally agrees with the autosomal topology, we found that the topology most often located on the X chromosome follows the historical species branching order, with pervasive introgression on the autosomes producing relationships that group the three highly anthropophilic species together. With knowledge of the correct species branching order, we are further able to uncover introgression between another species pair, as well as a complex history of balancing selection, introgression, and local adaptation of a large autosomal inversion that confers aridity tolerance. Conclusion We identify the correct species branching order of the An. gambiae species complex, resolving a contentious phylogeny. Notably, lineages leading to the principal vectors of human malaria were among the first in the complex to radiate and are not most closely related to each other. Pervasive autosomal introgression between these human malaria vectors, including nonsister vector species, suggests that traits enhancing vectorial capacity can be acquired not only through de novo mutation but also through a more rapid process of interspecific genetic exchange. Time-lapse photographs of an adult anopheline mosquito emerging from its pupal case. RELATED ITEMS IN ScienceD. E. Neafsey et al., Science 347, 1258522 (2015) Introgressive hybridization is now recognized as a widespread phenomenon, but its role in evolution remains contested. Here, we use newly available reference genome assemblies to investigate phylogenetic relationships and introgression in a medically important group of Afrotropical mosquito sibling species. We have identified the correct species branching order to resolve a contentious phylogeny and show that lineages leading to the principal vectors of human malaria were among the first to split. Pervasive autosomal introgression between these malaria vectors means that only a small fraction of the genome, mainly on the X chromosome, has not crossed species boundaries. Our results suggest that traits enhancing vectorial capacity may be gained through interspecific gene flow, including between nonsister species. Mosquito adaptability across genomes Virtually everyone has first-hand experience with mosquitoes. Few recognize the subtle biological distinctions among these bloodsucking flies that render some bites mere nuisances and others the initiation of a potentially life-threatening infection. By sequencing the genomes of several mosquitoes in depth, Neafsey et al. and Fontaine et al. reveal clues that explain the mystery of why only some species of one genus of mosquitoes are capable of transmitting human malaria (see the Perspective by Clark and Messer). Science, this issue 10.1126/science.1258524 and 10.1126/science.1258522; see also p. 27 Comparison of several genomes reveals the genetic history of mosquitoes’ ability to vector malaria among humans. [Also see Perspective by Clark and Messer]


Genome Research | 2009

Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives.

Thomas J. Sharpton; Jason E. Stajich; Steven D. Rounsley; Malcolm J. Gardner; Jennifer R. Wortman; Vinita S. Jordar; Rama Maiti; Chinnappa D. Kodira; Daniel E. Neafsey; Qiandong Zeng; Chiung Yu Hung; Cody McMahan; Anna Muszewska; Marcin Grynberg; M. Alejandra Mandel; Ellen M. Kellner; Bridget M. Barker; John N. Galgiani; Marc J. Orbach; Theo N. Kirkland; Garry T. Cole; Matthew R. Henn; Bruce W. Birren; John W. Taylor

While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Stepwise acquisition of pyrimethamine resistance in the malaria parasite

Elena R. Lozovsky; Thanat Chookajorn; Kyle M. Brown; Mallika Imwong; Philip Shaw; Sumalee Kamchonwongpaisan; Daniel E. Neafsey; Daniel M. Weinreich; Daniel L. Hartl

The spread of high-level pyrimethamine resistance in Africa threatens to curtail the therapeutic lifetime of antifolate antimalarials. We studied the possible evolutionary pathways in the evolution of pyrimethamine resistance using an approach in which all possible mutational intermediates were created by site-directed mutagenesis and assayed for their level of drug resistance. The coding sequence for dihydrofolate reductase (DHFR) from the malaria parasite Plasmodium falciparum was mutagenized, and tests were carried out in Escherichia coli under conditions in which the endogenous bacterial enzyme was selectively inhibited. We studied 4 key amino acid replacements implicated in pyrimethamine resistance: N51I, C59R, S108N, and I164L. Using empirical estimates of the mutational spectrum in P. falciparum and probabilities of fixation based on the relative levels of resistance, we found that the predicted favored pathways of drug resistance are consistent with those reported in previous kinetic studies, as well as DHFR polymorphisms observed in natural populations. We found that 3 pathways account for nearly 90% of the simulated realizations of the evolution of pyrimethamine resistance. The most frequent pathway (S108N and then C59R, N51I, and I164L) accounts for more than half of the simulated realizations. Our results also suggest an explanation for why I164L is detected in Southeast Asia and South America, but not at significant frequencies in Africa.


Nature Genetics | 2012

The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum

Daniel E. Neafsey; Kevin Galinsky; Rays H. Y. Jiang; Lauren Young; Sean Sykes; Sakina Saif; Sharvari Gujja; Jonathan M. Goldberg; Qiandong Zeng; Sinéad B. Chapman; A. P. Dash; Anupkumar R. Anvikar; Patrick L. Sutton; Bruce W. Birren; Ananias A. Escalante; John W. Barnwell; Jane M. Carlton

We sequenced and annotated the genomes of four P. vivax strains collected from disparate geographic locations, tripling the number of genome sequences available for this understudied parasite and providing the first genome-wide perspective of global variability in this species. We observe approximately twice as much SNP diversity among these isolates as we do among a comparable collection of isolates of P. falciparum, a malaria-causing parasite that results in higher mortality. This indicates a distinct history of global colonization and/or a more stable demographic history for P. vivax relative to P. falciparum, which is thought to have undergone a recent population bottleneck. The SNP diversity, as well as additional microsatellite and gene family variability, suggests a capacity for greater functional variation in the global population of P. vivax. These findings warrant a deeper survey of variation in P. vivax to equip disease interventions targeting the distinctive biology of this neglected but major pathogen.


Science | 2010

SNP Genotyping Defines Complex Gene-Flow Boundaries Among African Malaria Vector Mosquitoes

Daniel E. Neafsey; Mara K. N. Lawniczak; Daniel J. Park; Seth Redmond; Mamadou Coulibaly; Sekou F. Traore; N'Fale Sagnon; Carlo Costantini; Christopher N. Johnson; Roger Wiegand; Frank H. Collins; Eric S. Lander; Dyann F. Wirth; Fotis C. Kafatos; Nora J. Besansky; G. K. Christophides; Marc A. T. Muskavitch

Signals of Mosquito Speciation Malaria in Africa is transmitted by the mosquito species complex Anopheles gambiae. Neafsey et al. (p. 514) made high-resolution single-nucleotide arrays to map genetic divergence among members of the species. Differentiation between populations was observed and evidence obtained for selective sweeps within populations. Most divergence occurred within inversion regions around the centrosome and in genes associated with development, pheromone signaling, and from the X chromosome. The analysis also revealed signals of sympatric speciation occurring within similar chromosomal regions in mosquitoes from different regions in Africa. Lawniczak et al. (p. 512) sequenced the genomes of two molecular forms (known as M and S) of A. gambiae, which have distinctive behavioral phenotypes and appear to be speciating. This effort resolves problems arising from the apparently chimeric nature of the reference genome and confirms the observed genome-wide divergences. This kind of analysis has the potential to contribute to control programs that can adapt to population shifts in mosquito behavior arising from the selective effects of the control measures themselves. Populations of African malaria vectors show signs of selective sweeps and ongoing speciation in their genomes. Mosquitoes in the Anopheles gambiae complex show rapid ecological and behavioral diversification, traits that promote malaria transmission and complicate vector control efforts. A high-density, genome-wide mosquito SNP-genotyping array allowed mapping of genomic differentiation between populations and species that exhibit varying levels of reproductive isolation. Regions near centromeres or within polymorphic inversions exhibited the greatest genetic divergence, but divergence was also observed elsewhere in the genomes. Signals of natural selection within populations were overrepresented among genomic regions that are differentiated between populations, implying that differentiation is often driven by population-specific selective events. Complex genomic differentiation among speciating vector mosquito populations implies that tools for genome-wide monitoring of population structure will prove useful for the advancement of malaria eradication.


Genome Research | 2010

Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control

Daniel E. Neafsey; Bridget M. Barker; Thomas J. Sharpton; Jason E. Stajich; Daniel J. Park; Emily Whiston; Chiung Yu Hung; Cody McMahan; Jared White; Sean Sykes; David I. Heiman; Qiandong Zeng; Amr Abouelleil; Lynne Aftuck; Daniel Bessette; Adam Brown; Michael Fitzgerald; Annie Lui; J. Pendexter Macdonald; Margaret Priest; Marc J. Orbach; John N. Galgiani; Theo N. Kirkland; Garry T. Cole; Bruce W. Birren; Matthew R. Henn; John W. Taylor; Steven D. Rounsley

We have sequenced the genomes of 18 isolates of the closely related human pathogenic fungi Coccidioides immitis and Coccidioides posadasii to more clearly elucidate population genomic structure, bringing the total number of sequenced genomes for each species to 10. Our data confirm earlier microsatellite-based findings that these species are genetically differentiated, but our population genomics approach reveals that hybridization and genetic introgression have recently occurred between the two species. The directionality of introgression is primarily from C. posadasii to C. immitis, and we find more than 800 genes exhibiting strong evidence of introgression in one or more sequenced isolates. We performed PCR-based sequencing of one region exhibiting introgression in 40 C. immitis isolates to confirm and better define the extent of gene flow between the species. We find more coding sequence than expected by chance in the introgressed regions, suggesting that natural selection may play a role in the observed genetic exchange. We find notable heterogeneity in repetitive sequence composition among the sequenced genomes and present the first detailed genome-wide profile of a repeat-induced point mutation (RIP) process distinctly different from what has been observed in Neurospora. We identify promiscuous HLA-I and HLA-II epitopes in both proteomes and discuss the possible implications of introgression and population genomic data for public health and vaccine candidate prioritization. This study highlights the importance of population genomic data for detecting subtle but potentially important phenomena such as introgression.


The New England Journal of Medicine | 2015

Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine

Daniel E. Neafsey; Michal Juraska; Trevor Bedford; David Benkeser; Clarissa Valim; Allison D. Griggs; Marc Lievens; Salim Abdulla; Samuel Adjei; Tsiri Agbenyega; Selidji Todagbe Agnandji; Pedro Aide; Scott Anderson; Daniel Ansong; John J. Aponte; Kwaku Poku Asante; Philip Bejon; Ashley J. Birkett; Myriam Bruls; Kristen M. Connolly; Umberto D'Alessandro; Carlota Dobaño; Samwel Gesase; Brian Greenwood; Jonna Grimsby; Halidou Tinto; Mary J. Hamel; Irving Hoffman; Portia Kamthunzi; Simon Kariuki

BACKGROUND The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


Genome Biology | 2008

Genome-wide SNP genotyping highlights the role of natural selection in Plasmodium falciparum population divergence

Daniel E. Neafsey; Stephen F. Schaffner; Sarak K. Volkman; Daniel Park; Philip Montgomery; Danny A. Milner; Amanda K Lukens; David I. Rosen; Rachel Daniels; Nathan Houde; Joseph F. Cortese; Erin Tyndall; Casey Gates; Nicole Stange-Thomann; Ousmane Sarr; Daouda Ndiaye; Omar Ndir; Soulyemane Mboup; Marcelo U. Ferreira; Sandra do Lago Moraes; A. P. Dash; Chetan E. Chitnis; Roger Wiegand; Daniel L. Hartl; Bruce W. Birren; Eric S. Lander; Pardis C. Sabeti; Dyann F. Wirth

BackgroundThe malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum.ResultsUsing an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, inter-population differentiation, and the degree to which allele frequencies are correlated between populations.ConclusionsThe distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.


eLife | 2015

Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

Yong H. Woo; Hifzur Rahman Ansari; Thomas D. Otto; Christen M. Klinger; Martin Kolisko; Jan Michálek; Alka Saxena; Dhanasekaran Shanmugam; Annageldi Tayyrov; Alaguraj Veluchamy; Shahjahan Ali; Axel Bernal; Javier Campo; Jaromír Cihlář; Pavel Flegontov; Sebastian G. Gornik; Eva Hajdušková; Aleš Horák; Jan Janouškovec; Nicholas J. Katris; Fred D. Mast; Diego Miranda-Saavedra; Tobias Mourier; Raeece Naeem; Mridul Nair; Aswini K. Panigrahi; Neil D. Rawlings; Eriko Padron-Regalado; Abhinay Ramaprasad; Nadira Samad

The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI: http://dx.doi.org/10.7554/eLife.06974.001

Collaboration


Dive into the Daniel E. Neafsey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daouda Ndiaye

Cheikh Anta Diop University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge