Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Paiva is active.

Publication


Featured researches published by Alexandre Paiva.


Bioresource Technology | 2014

Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology

Madalena V. Cruz; Alexandre Paiva; Pedro Lisboa; Filomena Freitas; Vítor D. Alves; Pedro C. Simões; Susana Barreiros; Maria A.M. Reis

Spent coffee grounds (SCG) oil was obtained by supercritical carbon dioxide (scCO2) extraction in a pilot plant apparatus, with an oil extraction yield of 90% at a 35kgkg(-1) CO2/SCG ratio. Cupriavidus necator DSM 428 was cultivated in 2L bioreactor using extracted SCG oil as sole carbon source for production of polyhydroxyalkanoates. The culture reached a cell dry weight of 16.7gL(-1) with a polymer content of 78.4% (w/w). The volumetric polymer productivity and oil yield were 4.7gL(-1)day(-1) and 0.77gg(-1), respectively. The polymer produced was a homopolymer of 3-hydroxybutyrate with an average molecular weight of 2.34×10(5) and a polydispersity index of 1.2. The polymer exhibited brittle behaviour, with very low elongation at break (1.3%), tensile strength at break of 16MPa and Youngs Modulus of 1.0GPa. Results show that SCG can be a bioresource for polyhydroxyalkanoates production with interesting properties.


International Journal of Pharmaceutics | 2015

Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology

Ivo Manuel Ascensão Aroso; Rita Craveiro; Ângelo Rocha; Madalena Dionísio; Susana Barreiros; Rui L. Reis; Alexandre Paiva; Ana Rita C. Duarte

Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-ϵ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.


European Journal of Pharmaceutics and Biopharmaceutics | 2016

Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems

Ivo Manuel Ascensão Aroso; João Pedro Martins Soares Castro Silva; Francisca Mano; Ana S. Ferreira; Madalena Dionísio; Isabel de Sá-Nogueira; Susana Barreiros; Rui L. Reis; Alexandre Paiva; Ana Rita C. Duarte

A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.


New Biotechnology | 2016

Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates.

Madalena V. Cruz; Filomena Freitas; Alexandre Paiva; Francisca Mano; Madalena Dionísio; A.M. Ramos; Maria A.M. Reis

Olive oil distillate (OOD), biodiesel fatty acids-byproduct (FAB) and used cooking oil (UCO) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) with different composition using twelve bacterial strains. OOD and FAB were exploited for the first time as alternative substrates for PHA production. UCO, OOD and FAB were used by Cupriavidus necator and Pseudomonas oleovorans to synthesize the homopolymer poly-3-hydroxybutyrate, while Pseudomonas resinovorans and Pseudomonas citronellolis produced mcl-PHA polymers mainly composed of hydroxyoctanoate and hydroxydecanoate monomers. The highest polymer content in the biomass was obtained for C. necator (62 wt.%) cultivated on OOD. Relatively high mcl-PHA content (28-31 wt.%) was reached by P. resinovorans cultivated in OOD. This study shows, for the first time, that OOD is a promising substrate for PHA production since it gives high polymer yields and allows for the synthesis of different polymers (scl- or mcl-PHA) by selection of the adequate strains.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents: Solubility and permeability studies

Ana Rita C. Duarte; Ana S. Ferreira; Susana Barreiros; Eurico J. Cabrita; Rui L. Reis; Alexandre Paiva

&NA; THEDES, so called therapeutic deep eutectic solvents are here defined as a mixture of two components, which at a particular molar composition become liquid at room temperature and in which one of them is an active pharmaceutical ingredient (API). In this work, THEDES based on menthol complexed with three different APIs, ibuprofen (ibu), BA (BA) and phenylacetic acid (PA), were prepared. The interactions between the components that constitute the THEDES were studied by NMR, confirming that the eutectic system is formed by H‐bonds between menthol and the API. The mobility of the THEDES components was studied by PFGSE NMR spectroscopy. It was determined that the self‐diffusion of the species followed the same behavior as observed previously for ionic liquids, in which the components migrate via jumping between voids in the suprastructure created by punctual thermal fluctuations. The solubility and permeability of the systems in an isotonic solution was evaluated and a comparison with the pure APIs was established through diffusion and permeability studies carried out in a Franz cell. The solubility of the APIs when in the THEDES system can be improved up to 12 fold, namely for the system containing ibu. Furthermore, for this system the permeability was calculated to be 14 × 10−5 cm/s representing a 3 fold increase in comparison with the pure API. With the exception of the systems containing PA an increase in the solubility, coupled with an increase in permeability was observed. In this work, we hence demonstrate the efficiency of THEDES as a new formulation for the enhancement of the bioavailability of APIs by changing the physical state of the molecules from a solid dosage to a liquid system. Graphical abstract Figure. No caption available.


RSC Advances | 2014

Starch-based polymer–IL composites formed by compression moulding and supercritical fluid foaming for self-supported conductive materials

Rita Craveiro; Marta Martins; G. Santos; Natália T. Correia; Madalena Dionísio; Susana Barreiros; Ana Rita C. Duarte; Rui L. Reis; Alexandre Paiva

In this work, blends of starch and poly-e-caprolactone (PCL) doped with different concentrations of 1-butyl-3-methylimidazolium acetate ([BMIM]Ac) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) were studied. The blends were characterized by mechanical analysis, infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS), evaluating the IL doping effect. The samples were subjected to supercritical carbon dioxide foaming and the morphology of the structures was assessed. DSC shows a single glass transition and melting endotherm for foamed and unfoamed samples, having no effect upon IL doping, and DRS shows increased molecular mobility for blends with higher IL concentrations, and some hindrance for lower ones. The conductivity for SPCL doped with 30% [BMIM]Cl, before and after foaming, is comparable to the conductivity of the IL but exhibits more stable conductivity values, opening doors for applications as self-supported conductive materials.


International Journal of Biological Macromolecules | 2014

Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates.

Cristiana Morais; Filomena Freitas; Madalena V. Cruz; Alexandre Paiva; Madalena Dionísio; Maria A.M. Reis

A fat-containing waste produced from the margarine manufacturing process was tested as a low cost carbon source for cultivation of different polyhydroxyalkanoates (PHAs) producing bacterial strains, including Cupriavidus necator, Comamonas testosteroni and several Pseudomonas strains. The margarine waste was mainly composed of free fatty acids (76wt.%), namely mystiric, oleic, linoleic and stearic acids. In preliminary shake flask experiments, several strains were able to grow on the margarine waste, but C. necator reached the highest PHA content in the biomass (69wt.%). This strain was selected for batch bioreactor experiments, wherein it reached a cell dry weight of 11.2g/L with a polymer content of 56wt.%. The culture produced 6.4g/L of polyhydroxybutyrate, P3(HB), within 20h of cultivation, which corresponds to a volumetric productivity of 0.33gPHA/Lh. The P3(HB) polymer produced by C. necator from the margarine waste had a melting point of 173.4°C, a glass transition temperature of 7.9°C and a crystallinity of 56.6%. Although the bioprocess needs to be optimized, the margarine waste was shown to be a promising substrate for P(3HB) production by C. necator, resulting in a polymer with physical and chemical properties similar to bacterial P(3HB) synthesized from other feedstocks.


Cryobiology | 2018

Natural deep eutectic systems as alternative nontoxic cryoprotective agents

Vânia I. B. Castro; Rita Craveiro; Joana Silva; Rui L. Reis; Alexandre Paiva; Ana Rita C. Duarte

Natural deep eutectic systems (NADES) are mostly composed of natural primary metabolites such as sugars, sugar alcohols, organic acids, amino acids and amines. These simple molecules have been identified in animals living in environments with extreme temperature amplitudes, being responsible for their survival at negative temperatures during winter. Herein, we report for the first time the use of NADES based on trehalose (Treh) and glycerol (Gly) in cryopreservation, as cryoprotective agents (CPA). The evaluation of the thermal behaviour of these eutectic systems, showed that NADES have a strong effect on the water crystallization/freezing and melting process, being able to reduce the number of ice crystals and hence ice crystal damage in cells, which is a crucial parameter for their survival, upon freezing. Using this NADES as CPA, it is possible to achieve similar or even better cellular performance when compared with the gold standard for cryopreservation dimethyl sulfoxide (DMSO). In this sense, this work relates the physical properties of the NADES with their biological performance in cryopreservation. Our comprehensive strategy results in the demonstration of NADES as a promising nontoxic green alternative to the conventional CPAs used in cryopreservation methods.


Molecular Pharmaceutics | 2017

Stabilizing Unstable Amorphous Menthol through Inclusion in Mesoporous Silica Hosts

Teresa Cordeiro; Carmem Castiñeira; Davide Mendes; Florence Danède; João Sotomayor; Isabel Fonseca; Marco Silva; Alexandre Paiva; Susana Barreiros; M. Margarida Cardoso; M. T. Viciosa; Natália T. Correia; Madalena Dionísio

The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, Tg = -54.3 °C, is in good agreement with the one predicted by the composition dependence of the Tg values determined for menthol:flurbiprofen therapeutic deep eutectic solvents (THEDESs). Nonisothermal crystallization was never observed for neat menthol loaded into silica hosts, which can indicate that menthol rests as a full amorphous/supercooled material inside the pores of the silica matrixes. Menthol mobility was probed by dielectric relaxation spectroscopy, which allowed to identify two relaxation processes in both pore sizes: a faster one associated with mobility of neat-like menthol molecules (α-process), and a slower, dominant one due to the hindered mobility of menthol molecules adsorbed at the inner pore walls (S-process). The fraction of molecular population governing the α-process is greater in the higher (5.9 nm) pore size matrix, although in both cases the S-process is more intense than the α-process. A dielectric glass transition temperature was estimated for each α (Tg,dielc(α)) and S (Tg,dielc(S)) molecular population from the temperature dependence of the relaxation times to 100 s. While Tg,dielc(α) agrees better with the value obtained from the linearization of the Fox equation assuming ideal behavior of the menthol:flurbiprofen THEDES, Tg,dielc(S) is close to the value determined by calorimetry for the silica composites due to a dominance of the adsorbed population inside the pores. Nevertheless, the greater fraction of more mobile bulk-like molecules in the 5.9 nm pore size matrix seems to determine the faster drug release at initial times relative to the 3.2 nm composite. However, the latter inhibits crystallization inside pores since its dimensions are inferior to menthol critical size for nucleation. This points to a suitability of these composites as drug delivery systems in which the drug release profile can be controlled by tuning the host pore size.


Aaps Pharmscitech | 2017

Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin

Francisca Mano; Marta Martins; Isabel de Sá-Nogueira; Susana Barreiros; João P. Borges; Rui L. Reis; Ana Rita C. Duarte; Alexandre Paiva

Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.

Collaboration


Dive into the Alexandre Paiva's collaboration.

Top Co-Authors

Avatar

Susana Barreiros

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro C. Simões

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Rita Craveiro

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madalena Dionísio

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Francisca Mano

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge