Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madalena Dionísio is active.

Publication


Featured researches published by Madalena Dionísio.


Journal of Physical Chemistry B | 2008

Molecular Motions in Amorphous Ibuprofen As Studied by Broadband Dielectric Spectroscopy

Ana R. Brás; J.P. Noronha; Alexandra M. M. Antunes; M. Margarida Cardoso; Andreas Schönhals; F. Affouard; Madalena Dionísio; Natália T. Correia

The molecular mobility of amorphous ibuprofen has been investigated by broadband dielectric relaxation spectroscopy (DRS) covering a temperature range of more than 200 K. Four different relaxation processes, labeled as alpha, beta, gamma, and D, were detected and characterized, and a complete relaxation map was given for the first time. The gamma-process has activation energy E a = 31 kJ.mol (-1), typical for local mobility. The weak beta-relaxation, observed in the glassy state as well as in the supercooled state was identified as the genuine Johari-Goldstein process. The temperature dependence of the relaxation time of the alpha-process (dynamic glass transition) does not obey a single VFTH law. Instead two VFTH regimes are observed separated by a crossover temperature, T B = 265 K. From the low temperature VFTH regime, a T g (diel) (tau =100 s) = 226 K was estimated, and a fragility or steepness index m = 93, was calculated showing that ibuprofen is a fragile glass former. The D-process has a Debye-like relaxation function but the temperature dependence of relaxation time also follows the VFTH behavior, with a Vogel temperature and a pre-exponential factor which seem to indicate that its dynamics is governed by the alpha-process. It has similar features as the Debye-type process observed in a variety of associating liquids, related to hydrogen bonding dynamics. The strong tendency of ibuprofen to form hydrogen bonded aggregates such as dimers and trimers either cyclic or linear which seems to control in particular the molecular mobility of ibuprofen was confirmed by IR spectroscopy, electrospray ionization mass spectrometry, and MD simulations.


International Journal of Pharmaceutics | 2015

Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology

Ivo Manuel Ascensão Aroso; Rita Craveiro; Ângelo Rocha; Madalena Dionísio; Susana Barreiros; Rui L. Reis; Alexandre Paiva; Ana Rita C. Duarte

Deep eutectic solvents (DES) can be formed by bioactive compounds or pharmaceutical ingredients. A therapeutic DES (THEDES) based on ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), and menthol was synthesized and its thermal behavior was analyzed by differential scanning calorimetry (DSC). A controlled drug delivery system was developed by impregnating a starch:poly-ϵ-caprolactone polymeric blend (SPCL 30:70) with the menthol:ibuprofen THEDES in different ratios (10 and 20 wt%), after supercritical fluid sintering at 20 MPa and 50 °C. The morphological characterization of SPCL matrices impregnated with THEDES was performed by scanning electron microscopy (SEM) and micro-computed tomography (micro-CT). Drug release studies were carried out in a phosphate buffered saline. The results obtained provide important clues for the development of carriers for the sustainable delivery of bioactive compounds.


European Journal of Pharmaceutics and Biopharmaceutics | 2016

Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems

Ivo Manuel Ascensão Aroso; João Pedro Martins Soares Castro Silva; Francisca Mano; Ana S. Ferreira; Madalena Dionísio; Isabel de Sá-Nogueira; Susana Barreiros; Rui L. Reis; Alexandre Paiva; Ana Rita C. Duarte

A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.


Polymer | 1994

Dielectric relaxation in poly(n-alkyl methacrylate)s and their mixtures with p-nitroaniline

Madalena Dionísio; Joaquim J. Moura-Ramos; Graham Williams

In the work described in this paper the dielectric properties of solid solutions of p-nitroaniline in poly(methyl methacrylate), poly(ethyl methacrylate) and poly(n-butyl methacrylate) were measured in the frequency range from 20 to 106 Hz and the results obtained were compared with those of the pure polymers. It is shown that the presence of the solute has a strong influence on the relaxation process of poly(methyl methacrylate), and this is ascribed to the formation of hydrogen bonds between the amino group of the solute and the side groups of the polymer. In poly(ethyl methacrylate) this effect is less pronounced and it is absent in the case of poly(n-butyl methacrylate), suggesting that the increasing size of the n-alkyl group prevents hydrogen bond formation between the solute and the polymer.


Journal of Physical Chemistry B | 2012

Understanding the Ion Jelly Conductivity Mechanism

Tânia Carvalho; Vera Augusto; Ana R. Brás; N. Lourenço; Carlos A. M. Afonso; Susana Barreiros; Natália T. Correia; Pedro Vidinha; Eurico J. Cabrita; C.J. Dias; Madalena Dionísio; B. Roling

The properties of the light flexible device, ion jelly, which combines gelatin with an ionic liquid (IL) were recently reported being promising to develop safe and highly conductive electrolytes. This article aims for the understanding of the ion jelly conductive mechanism using dielectric relaxation spectroscopy (DRS) in the frequency range 10(-1)-10(6) Hz; the study was complemented with differential scanning calorimetry (DSC) and pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy. The room temperature ionic liquid 1-butyl-3-methylimmidazolium dicyanamide (BMIMDCA) used as received (1.9% w/w water content) and with 6.6% (w/w) of water content and two ion jellies with two different ratios BMIMDCA/gelatin/water % (w/w), IJ1 (41.1/46.7/12.2) and IJ3 (67.8/25.6/6.6), have been characterized. A glass transition was detected by DSC for all materials allowing for classifying them as glass formers. For the ionic liquid, it was observed that the glass transition temperature decreases with the increase of water content. While in subsequent calorimetric runs crystallization was observed for BMIMDCA with negligible water content, no crystallization was detected for any of the ion jelly materials upon themal cycling. To the dielectric spectra of all tested materials, both dipolar relaxation and conductivity contribute; at the lowest frequencies, electrode and interfacial polarization highly dominate. Conductivity, which manifests much more intensity relative to dipolar reorientations, strongly evidences subdiffusive ion dynamics at high frequencies. From dielectric measures, transport properties as mobility and diffusion coefficients were extracted. Data treatment was carried out in order to deconvolute the average diffusion coefficients estimated from dielectric data in its individual contributions of cations (D(+)) and anions (D(-)). The D(+) values thus obtained for IJ3, the ion jelly with the highest IL/gelatin ratio, cover a large temperature range up to room temperature and revealed excellent agreement with direct measurements from PFG NMR, obeying to the same VFT equation. For BMIMDCA(6.6%water), which has the same water amount as IJ3, the diffusion coefficients were only estimated from DRS measurements over a limited temperature range; however, a single VFT equation describes both DRS and PFG NMR data. Moreover, it was found that the diffusion coefficients and mobility are similar for the ionic liquid and IJ3, which points to a role of both water and gelatin weakening the contact ion pair, facilitating the translational motion of ions and promoting its dissociation; nevertheless, it is conceivable the existence of a critical composition of gelatin that leads to those properties. The VFT temperature dependence observed for the conductivity was found to be determined by a similar dependence of the mobility. Both conductivity and segmental motion revealed to be correlated as inferred by the relatively low values of the decoupling indexes. The obtained results show that ion jelly could be in fact a very promising material to design novel electrolytes for different electrochemical devices, having a performance close to the IL but presenting an additional stability regarding electrical measurements and resistance against crystallization relative to the bulk ionic liquid.


Journal of Physical Chemistry B | 2010

Dynamical Characterization of a Cellulose Acetate Polysaccharide

Miriam Sousa; Ana R. Brás; Helena Isabel M. Veiga; Frederico Castelo Ferreira; Maria Norberta de Pinho; Natália T. Correia; Madalena Dionísio

This work brings together dynamical and structural information at a molecular level for cellulose acetate being an original contribution to the general description of polysaccharide properties. In particular, it allowed reinterpreting the secondary relaxation mechanisms that are still controversial in the literature; a compilation of data provided by different authors is provided. Detailed dynamical information is provided by dielectric relaxation spectroscopy (DRS) (10(-1)-10(6) Hz) for cellulose acetate (CA) in the sub-T(g) region below ambient temperature; results were compared with cellulose acetate structured as an asymmetric membrane (CAmb). In samples with low water content, two secondary relaxation processes between 173 and 298 K were identified by DRS, associated with localized mobility. The process located at the lowest temperatures (process I) has a different mobility in CA relative to CAmb. The identical crystalline/amorphous state of both materials allowed rationalizing the distinct behavior in terms of polymeric arrangement and ability for water uptake. The looser structure of the CA relative to CAmb as confirmed by FTIR, TGA, and DSC analysis makes more sites accessible to water molecules, resulting in a higher water retention in CA (2.73% w/w) relative to CAmb (1.60% w/w) and an increased molecular mobility in the former due to a plasticizing effect. In both materials, process I is significantly influenced by hydration, shifting to higher frequencies and lower temperatures upon water uptake. This process seems to be associated with mobility occurring within the monomeric unit, which embraces the two anhydroglucose rings connected by the glycosidic linkage and the polar groups directly attached to it. It should involve a very limited length scale, as suggested by its location, far below the glass transition, and the tau(infinity) value with a low entropic effect. The relaxation process that emerges later, process II, is similar for both samples being much less influenced by water but experiencing a slight antiplasticizing effect shifting to lower frequencies and higher temperatures upon hydration. It should involve side group motions, strongly coupled to the mobility of the anhydroglucose rings, which become hindered probably due to establishment of H-bonds with water molecules. The plasticizing/antiplasticizing effect is being discussed only on the basis of the frequency position of the relaxation peak. Processes I and II merge into a broad relaxation (gamma(dry)) upon water removal in both CA and CAmb, however evolving slower in the former with drying, due to a more disordered structure of CA that allows water to interact with more internal sites in the polymer. At higher temperatures (T > or = 353 K), a process emerges in the high frequency side of the dynamic alpha-relaxation which is compatible with a beta(JG)-relaxation. The structured specimen CAmb provided an additional way to probe the morphological changes undergone by the material when annealed to temperatures higher than 353 K, originating an increase in the dielectric response. This effect can be associated with a skin densification and partial collapse of the membrane porous network, as observed by SEM.


Journal of Chemical Physics | 2010

Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree

Ana R. Brás; S. Frunza; L. Guerreiro; Isabel Fonseca; A. Corma; L. Frunza; Madalena Dionísio; Andreas Schönhals

The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.


Journal of Physical Chemistry B | 2008

Confinement and surface effects on the molecular dynamics of a nematic mixture investigated by dielectric relaxation spectroscopy.

Ana R. Brás; Madalena Dionísio; Andreas Schönhals

Broadband dielectric spectroscopy (10(-2)-10(9) Hz) was employed to investigate the molecular dynamics of the liquid crystalline mixture E7 confined in both untreated and lecithin-treated 20 nm Anopore membranes. Because E7 does not crystallize, it was possible to cover a temperature range of more than 200 K, providing an exhaustive dielectric characterization of a liquid crystal confined to Anopore membranes for the first time. In the nematic state, the tumbling (alpha-) and the delta-relaxation are observed, also under confinement conditions. The analysis of their relative intensities give that the orientation of the E7 molecules is preferentially axial in untreated but opposite radial in lecithin-treated pores. The radial alignment of the liquid crystals in the modified membrane is understood as a tail-to-tail conformation of E7 molecules imposed by the adsorbed lecithin molecules. The relaxation rate of the alpha-process is enhanced for E7 confined in native Anopore compared with the bulk and E7 in treated pores. This is interpreted as resulting from a less dense molecular packing of E7 in the middle of the pore compared to the bulk. In both untreated and treated membranes, the relaxation rate of the delta-process is higher than in the bulk, and the values of the respective Vogel-Fulcher-Tammann temperatures depend on the actual surface treatment. Additionally, a surface process, due to molecular fluctuations of molecules within an adsorbed layer at the pore wall, was detected.


Liquid Crystals | 2007

Characterization of a nematic mixture by reversed‐phase HPLC and UV spectroscopy: an application to phase behaviour studies in liquid crystal–CO2 systems

Ana R. Brás; Sara Henriques; Teresa Casimiro; Ana Aguiar-Ricardo; João Sotomayor; Jorge Caldeira; Celina Santos; Madalena Dionísio

In the present work a simple but selective reversed‐phase high performance liquid chromatographic method (HPLC) was developed for the analysis of the nematic liquid crystal mixture E7 to determine precisely the composition of the liquid crystal mixture used in PDLC film preparation. Ultraviolet absorption spectrophotometry experiments were carried out to determine the HPLC detection wavelength and to characterize the absorptivity constants of E7 constituents. The technique developed is applied in the case of equilibrium solubility studies for E7 in supercritical carbon dioxide (scCO2). The results indicate unambiguously that scCO2 can fractionate the mixture towards the E7 components. The four single component peaks of the E7 mixture were distinctively separated by this method, which enabled the determination of the solubility of E7 constituents in the scCO2.


Journal of Materials Science | 1995

Absorbed water in the cork structure. A study by thermally stimulated currents, dielectric relaxation spectroscopy, isothermal depolarization experiments and differential scanning calorimetry

Madalena Dionísio; Natália T. Correia; João F. Mano; Joaquim J. Moura Ramos; Anabela C. Fernandes; Benilde Saramago

This paper reports on a modification of the dielectric properties of cork which occurs as a consequence of heating above 60° C or evacuation for several days. This phenomenon was observed using different experimental techniques (thermally stimulated currents, dielectric relaxation spectroscopy, isothermal depolarization experiments and differential scanning calorimetry), and the corresponding kinetics were analysed. It was observed that the original properties of cork were recovered if the sample was exposed to room air for several weeks. It is suggested that the reported modification of the dielectric properties arises from desorption, induced by heating or evacuation, of water molecules absorbed in the cork structure.

Collaboration


Dive into the Madalena Dionísio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. T. Viciosa

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Barreiros

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Alexandre Paiva

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Ana R. Brás

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Ana R. Brás

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

C.J. Dias

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge