Alexandre Pawlik
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre Pawlik.
Nature Genetics | 2013
Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez
Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.
Nature Genetics | 2013
Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez
Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Jesús Gonzalo-Asensio; Wladimir Malaga; Alexandre Pawlik; Catherine Astarie-Dequeker; Charlotte Passemar; Flavie Moreau; Françoise Laval; Mamadou Daffé; Carlos Martín; Roland Brosch; Christophe Guilhot
Significance In 1901, when Robert Koch proposed that the bacilli causing human and bovine tuberculosis were not identical, this view caused much controversy. Now, 113 y later, we know that the bovine tuberculosis agent, Mycobacterium bovis, together with other animal strains, forms a separate phylogenetic lineage apart from the human Mycobacterium tuberculosis lineages, but the molecular reasons why bovine and animal strains only play minor roles in human tuberculosis epidemiology remain unknown. Herein, we show by genetic transfer and virulence experiments that specific mutations in a virulence regulator contribute to lower fitness and virulence of M. bovis and related strains for the human host, likely obstructing the capacity of causing overt disease needed for efficient human-to-human transmission. Although the bovine tuberculosis (TB) agent, Mycobacterium bovis, may infect humans and cause disease, long-term epidemiological data indicate that humans represent a spill-over host in which infection with M. bovis is not self-maintaining. Indeed, human-to-human transmission of M. bovis strains and other members of the animal lineage of the tubercle bacilli is very rare. Here, we report on three mutations affecting the two-component virulence regulation system PhoP/PhoR (PhoPR) in M. bovis and in the closely linked Mycobacterium africanum lineage 6 (L6) that likely account for this discrepancy. Genetic transfer of these mutations into the human TB agent, Mycobacterium tuberculosis, resulted in down-regulation of the PhoP regulon, with loss of biologically active lipids, reduced secretion of the 6-kDa early antigenic target (ESAT-6), and lower virulence. Remarkably, the deleterious effects of the phoPR mutations were partly compensated by a deletion, specific to the animal-adapted and M. africanum L6 lineages, that restores ESAT-6 secretion by a PhoPR-independent mechanism. Similarly, we also observed that insertion of an IS6110 element upstream of the phoPR locus may completely revert the phoPR-bovis–associated fitness loss, which is the case for an exceptional M. bovis human outbreak strain from Spain. Our findings ultimately explain the long-term epidemiological data, suggesting that M. bovis and related phoPR-mutated strains pose a lower risk for progression to overt human TB, with major impact on the evolutionary history of TB.
Molecular Microbiology | 2013
Alexandre Pawlik; Guillaume Garnier; Mickael Orgeur; Pin Tong; Amanda J. Lohan; Fabien Le Chevalier; Guillaume Sapriel; Anne-Laure Roux; Kevin C. Conlon; Nadine Honoré; Marie-Agnès Dillies; Laurence Ma; Christiane Bouchier; Jean-Yves Coppée; Jean-Louis Gaillard; Stephen V. Gordon; Brendan J. Loftus; Roland Brosch; Jean Louis Herrmann
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic‐resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non‐pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non‐ribosomal peptide synthase gene cluster mps1‐mps2‐gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco‐Peptido‐Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL‐production or transport makes a frequent switching back‐and‐forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.
Cellular Microbiology | 2011
Anne-Laure Roux; Aurélie Ray; Alexandre Pawlik; Halima Medjahed; Gilles Etienne; Martin Rottman; Emilie Catherinot; Jean-Yves Coppée; Karima Chaoui; Bernard Monsarrat; Antoine Toubert; Mamadou Daffé; Germain Puzo; Jean-Louis Gaillard; Roland Brosch; Nicolas Dulphy; Jérôme Nigou; Jean-Louis Herrmann
Changes in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M. abscessus is able to switch from a smooth (S) to a rough (R) morphotype by the loss of a surface glycopeptidolipid. R variants are associated with severe clinical forms and a ‘hyper‐proinflammatory’ response in ex vivo and in vivo models. Using partitioning of cell surface components we found that a complex fraction, more abundant in R variants than in S variants, made a major contribution to the TLR‐2‐dependent hyper‐proinflammatory response induced by R variants. Lipoproteins were the main TLR‐2 agonists in this fraction, consistent with the larger amounts of 16 lipoproteins in cell surface extracts from R variants; 15 out of 16 being more strongly induced in R variant than in S variant. Genetic interruption of glycopeptidolipid pathway in wild‐type S variant resulted in R phenotype with similar induction of lipoprotein genes. In conclusion, R morphotype in M. abscessus is associated with increased synthesis/exposure at the cell surface of lipoproteins, these changes profoundly modifying the innate immune response through TLR‐2‐dependent mechanisms.
Infection and Immunity | 2014
Luis Solans; Nacho Aguilo; Sofía Samper; Alexandre Pawlik; Wafa Frigui; Carlos Martín; Roland Brosch; Jesús Gonzalo-Asensio
ABSTRACT The ESX-1 secreted virulence factor ESAT-6 is one of the major and most well-studied virulence factors of Mycobacterium tuberculosis, given that its inactivation severely attenuates virulent mycobacteria. In this work, we show that clinical isolates of M. tuberculosis produce and secrete larger amounts of ESAT-6 than the widely used M. tuberculosis H37Rv laboratory strain. A search for the genetic polymorphisms underlying this observation showed that whiB6 (rv3862c), a gene upstream of the ESX-1 genetic locus that has not previously been found to be implicated in the regulation of the ESX-1 secretory apparatus, presents a unique single nucleotide insertion in its promoter region in strains H37Rv and H37Ra. This polymorphism is not present in any of the other publicly available M. tuberculosis complex genomes or in any of the 76 clinical M. tuberculosis isolates analyzed in our laboratory. We demonstrate that in consequence, the virulence master regulator PhoP downregulates whiB6 expression in H37Rv, while it upregulates its expression in clinical strains. Importantly, reintroduction of the wild-type (WT) copy of whiB6 in H37Rv restored ESAT-6 production and secretion to the level of clinical strains. Hence, we provide clear evidence that in M. tuberculosis—with the exception of the H37Rv strain—ESX-1 expression is regulated by WhiB6 as part of the PhoP regulon, which adds another level of complexity to the regulation of ESAT-6 secretion with a potential role in virulence adaptation.
Nature microbiology | 2016
Eva C. Boritsch; Wafa Frigui; Alessandro Cascioferro; Wladimir Malaga; Gilles Etienne; Françoise Laval; Alexandre Pawlik; Fabien Le Chevalier; Mickael Orgeur; Laurence Ma; Christiane Bouchier; Timothy P. Stinear; Philip Supply; Laleh Majlessi; Mamadou Daffé; Christophe Guilhot; Roland Brosch
Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host–pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Eva C. Boritsch; Varun Khanna; Alexandre Pawlik; Nadine Honoré; Victor H. Navas; Laurence Ma; Christiane Bouchier; Torsten Seemann; Philip Supply; Timothy P. Stinear; Roland Brosch
Significance Whereas most of the more than 130 described mycobacterial species are harmless saprophytes, Mycobacterium tuberculosis, the human tuberculosis-causing agent, represents one of the deadliest bacterial pathogens in the history of humankind. To explore the mechanisms behind this spectacular evolutionary trajectory toward pathogenicity, we have experimentally investigated the faculty of different tuberculosis-causing mycobacteria in conducting horizontal gene transfer (HGT). Our studies identified unique chromosomal DNA transfer between strains of the Mycobacterium canettii clade, which resemble most closely the putative common ancestor of the M. tuberculosis complex. This outstanding feature suggests that during the evolution of M. tuberculosis, HGT might have represented the major mechanism for acquisition of genes that helped these mycobacteria to increasingly resist host defenses and become major pathogens. Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.
Molecular Microbiology | 2016
Christian Dupont; Albertus Viljoen; Faustine Dubar; Mickael Blaise; Audrey Bernut; Alexandre Pawlik; Christiane Bouchier; Roland Brosch; Yann Guérardel; Joël Lelièvre; Lluis Ballell; Jean-Louis Herrmann; Christophe Biot; Laurent Kremer
The natural resistance of Mycobacterium abscessus to most commonly available antibiotics seriously limits chemotherapeutic treatment options, which is particularly challenging for cystic fibrosis patients infected with this rapid‐growing mycobacterium. New drugs with novel molecular targets are urgently needed against this emerging pathogen. However, the discovery of such new chemotypes has not been appropriately performed. Here, we demonstrate the utility of a phenotypic screen for bactericidal compounds against M. abscessus using a library of compounds previously validated for activity against M. tuberculosis. We identified a new piperidinol‐based molecule, PIPD1, exhibiting potent activity against clinical M. abscessus strains in vitro and in infected macrophages. Treatment of infected zebrafish with PIPD1 correlated with increased embryo survival and decreased bacterial burden. Whole genome analysis of M. abscessus strains resistant to PIPD1 identified several mutations in MAB_4508, encoding a protein homologous to MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis was unaffected, PIPD1 strongly inhibited the transport of trehalose monomycolate, thereby abrogating mycolylation of arabinogalactan. Mapping the mutations conferring resistance to PIPD1 on a MAB_4508 tridimensional homology model defined a potential PIPD1‐binding pocket. Our data emphasize a yet unexploited chemical structure class against M. abscessus infections with promising translational development possibilities.
PLOS Pathogens | 2016
Fadel Sayes; Alexandre Pawlik; Wafa Frigui; Matthias I. Gröschel; Samuel Crommelynck; Catherine Fayolle; Felipe Cia; Gregory J. Bancroft; Daria Bottai; Claude Leclerc; Roland Brosch; Laleh Majlessi
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens.