Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wafa Frigui is active.

Publication


Featured researches published by Wafa Frigui.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Genome plasticity of BCG and impact on vaccine efficacy.

Roland Brosch; Stephen V. Gordon; Thierry Garnier; Karin Eiglmeier; Wafa Frigui; Philippe Valenti; Sandrine Dos Santos; S. Duthoy; Céline Lacroix; Carmen García-Pelayo; Jacqueline Inwald; Javier Nunez Garcia; R. Glyn Hewinson; Marcel A. Behr; Michael A. Quail; Carol Churcher; Bart Barrell; Julian Parkhill; Stewart T. Cole

To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette–Guérin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines. The glycerol-3-phosphate dehydrogenase gene, glpD2, is one of only three genes common to all four DU2 variants, implying that BCG requires higher levels of this enzyme to grow on glycerol. Further amplification of the DU2 region is ongoing, even within vaccine preparations used to immunize humans. An evolutionary scheme for BCG vaccines was established by analyzing DU2 and other markers. Lesions in genes encoding σ-factors and pleiotropic transcriptional regulators, like PhoR and Crp, were also uncovered in various BCG strains; together with gene amplification, these affect gene expression levels, immunogenicity, and, possibly, protection against tuberculosis. Furthermore, the combined findings suggest that early BCG vaccines may even be superior to the later ones that are more widely used.


PLOS Pathogens | 2008

Control of M. tuberculosis ESAT-6 Secretion and Specific T Cell Recognition by PhoP

Wafa Frigui; Daria Bottai; Laleh Majlessi; Marc Monot; Emmanuelle Josselin; Priscille Brodin; Thierry Garnier; Brigitte Gicquel; Carlos Martín; Claude Leclerc; Stewart T. Cole; Roland Brosch

Analysis of mycobacterial strains that have lost their ability to cause disease is a powerful approach to identify yet unknown virulence determinants and pathways involved in tuberculosis pathogenesis. Two of the most widely used attenuated strains in the history of tuberculosis research are Mycobacterium bovis BCG (BCG) and Mycobacterium tuberculosis H37Ra (H37Ra), which both lost their virulence during in vitro serial passage. Whereas the attenuation of BCG is due mainly to loss of the ESAT-6 secretion system, ESX-1, the reason why H37Ra is attenuated remained unknown. However, here we show that a point mutation (S219L) in the predicted DNA binding region of the regulator PhoP is involved in the attenuation of H37Ra via a mechanism that impacts on the secretion of the major T cell antigen ESAT-6. Only H37Ra “knock-ins” that carried an integrated cosmid with the wild-type phoP gene from M. tuberculosis H37Rv showed changes in colony morphology, increased virulence, ESAT-6 secretion, and induction of specific T cell responses, whereas other H37Ra constructs did not. This finding established a link between the PhoP regulator and ESAT-6 secretion that opens exciting new perspectives for elucidating virulence regulation in M. tuberculosis.


Nature Genetics | 2013

Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis

Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez

Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.


Nature Genetics | 2013

Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis

Philip Supply; Michael Marceau; Sophie Mangenot; David Roche; Carine Rouanet; Varun Khanna; Laleh Majlessi; Alexis Criscuolo; Julien Tap; Alexandre Pawlik; Laurence Fiette; Mickael Orgeur; Michel Fabre; Cécile Parmentier; Wafa Frigui; Roxane Simeone; Eva C. Boritsch; Anne-Sophie Debrie; Eve Willery; Danielle Walker; Michael A. Quail; Laurence Ma; Christiane Bouchier; Grégory Salvignol; Fadel Sayes; Alessandro Cascioferro; Torsten Seemann; Valérie Barbe; Camille Locht; Maria-Cristina Gutierrez

Global spread and limited genetic variation are hallmarks of M. tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology are restricted to East Africa. Here, we sequenced and analyzed the whole genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4–5× coverage), 454/Roche (13–18× coverage) and/or Illumina DNA sequencing (45–105× coverage). We show that STB isolates are highly recombinogenic and evolutionarily early branching, with larger genome sizes, higher rates of genetic variation, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse infection experiments showed that STB strains are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral STB-like pool of mycobacteria by gain of persistence and virulence mechanisms, and we provide insights into the molecular events involved.


Molecular Microbiology | 2012

Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation.

Daria Bottai; M. di Luca; Laleh Majlessi; Wafa Frigui; Roxane Simeone; Fadel Sayes; Wilbert Bitter; Michael J. Brennan; Claude Leclerc; Giovanna Batoni; Mario Campa; Roland Brosch; Semih Esin

The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX‐1–ESX‐5). While the role of the ESX‐1 and ESX‐3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX‐5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX‐5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX‐5 knockout/deletion mutants, inactivating eccA5, eccD5, rv1794 and esxM genes or the ppe25‐pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX‐5‐encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD5ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD5ko and MtbΔppe25‐pe19 mutants were found attenuated both in macrophages and in the severe combined immune‐deficient mouse infection model. Altogether these findings indicate an essential role of ESX‐5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.


Journal of Bacteriology | 2005

Common evolutionary origin for the unstable virulence plasmid pMUM found in geographically diverse strains of Mycobacterium ulcerans

Timothy P. Stinear; Hui Hong; Wafa Frigui; Melinda J. Pryor; Roland Brosch; Thierry Garnier; Peter F. Leadlay; Stewart T. Cole

The 174-kb virulence plasmid pMUM001 in Mycobacterium ulcerans epidemic strain Agy99 harbors three very large and homologous genes that encode giant polyketide synthases (PKS) responsible for the synthesis of the lipid toxin mycolactone. Deeper investigation of M. ulcerans Agy99 resulted in identification of two types of spontaneous deletion variants of pMUM001 within a population of cells that also contained the intact plasmid. These variants arose from recombination between two 8-kb sections of the same plasmid sequence, resulting in the loss of a 65-kb region bearing two of the three mycolactone PKS genes. Investigation of nine diverse M. ulcerans strains by using PCR and Southern hybridization for eight pMUM001 gene sequences confirmed the presence of pMUM001-like elements (collectively called pMUM) in all M. ulcerans strains. Physical mapping of these plasmids revealed that like M. ulcerans Agy99, three strains had undergone major deletions in their mycolactone PKS loci. Online liquid chromatography-sequential mass spectrometry analysis of lipid extracts confirmed that strains with PKS deletions were unable to produce mycolactone or any related cometabolites. Interstrain comparisons of the plasmid gene sequences revealed greater than 98% nucleotide identity, and the phylogeny inferred from these sequences closely mimicked the phylogeny from a previous multilocus sequence typing study in which chromosomally encoded loci were used, a result that is consistent with the hypothesis that M. ulcerans diverged from the closely related organism Mycobacterium marinum by acquiring pMUM. Our results suggest that pMUM is a defining characteristic of M. ulcerans but that in the absence of purifying selection, deletion of plasmid sequences and a corresponding loss of mycolactone production readily arise.


Infection and Immunity | 2014

A Specific Polymorphism in Mycobacterium tuberculosis H37Rv Causes Differential ESAT-6 Expression and Identifies WhiB6 as a Novel ESX-1 Component

Luis Solans; Nacho Aguilo; Sofía Samper; Alexandre Pawlik; Wafa Frigui; Carlos Martín; Roland Brosch; Jesús Gonzalo-Asensio

ABSTRACT The ESX-1 secreted virulence factor ESAT-6 is one of the major and most well-studied virulence factors of Mycobacterium tuberculosis, given that its inactivation severely attenuates virulent mycobacteria. In this work, we show that clinical isolates of M. tuberculosis produce and secrete larger amounts of ESAT-6 than the widely used M. tuberculosis H37Rv laboratory strain. A search for the genetic polymorphisms underlying this observation showed that whiB6 (rv3862c), a gene upstream of the ESX-1 genetic locus that has not previously been found to be implicated in the regulation of the ESX-1 secretory apparatus, presents a unique single nucleotide insertion in its promoter region in strains H37Rv and H37Ra. This polymorphism is not present in any of the other publicly available M. tuberculosis complex genomes or in any of the 76 clinical M. tuberculosis isolates analyzed in our laboratory. We demonstrate that in consequence, the virulence master regulator PhoP downregulates whiB6 expression in H37Rv, while it upregulates its expression in clinical strains. Importantly, reintroduction of the wild-type (WT) copy of whiB6 in H37Rv restored ESAT-6 production and secretion to the level of clinical strains. Hence, we provide clear evidence that in M. tuberculosis—with the exception of the H37Rv strain—ESX-1 expression is regulated by WhiB6 as part of the PhoP regulon, which adds another level of complexity to the regulation of ESAT-6 secretion with a potential role in virulence adaptation.


Nature microbiology | 2016

pks5 -recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence

Eva C. Boritsch; Wafa Frigui; Alessandro Cascioferro; Wladimir Malaga; Gilles Etienne; Françoise Laval; Alexandre Pawlik; Fabien Le Chevalier; Mickael Orgeur; Laurence Ma; Christiane Bouchier; Timothy P. Stinear; Philip Supply; Laleh Majlessi; Mamadou Daffé; Christophe Guilhot; Roland Brosch

Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host–pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.


Cellular Microbiology | 2007

Early trafficking events of Mycobacterium ulcerans within Naucoris cimicoides

Laurent Marsollier; Jean-Paul Saint André; Wafa Frigui; Gilles Reysset; Geneviève Milon; Bernard Carbonnelle; Jacques Aubry; Stewart T. Cole

The severe skin‐destructive disease caused by Mycobacterium ulcerans, named Buruli ulcer, is the third most important mycobacterial disease in humans after tuberculosis and leprosy. Recently we demonstrated that M. ulcerans could colonize the salivary glands of the water bug, Naucoris cimicoides. In this study, we report that M. ulcerans may be delivered from the digested prey aspirate to the coelomic cavity via a unique headspace, the head capsule (HC). During the infected meal, we observed that M. ulcerans clusters adhered to the stylets that were retracted in the HC at the end of the meal. M. ulcerans was able to translocate from the HC to the coelomic cavity where it is phagocytosed by the plasmatocytes. These cells are subverted as shuttle cells and deliver M. ulcerans to the salivary glands. At this early stage of its parasitic life style, two other important features of M. ulcerans can be documented: first, mycolactone is not required for translocation of M. ulcerans into the HC, in contrast to the next step, colonization of the salivary glands; second, M. ulcerans clusters bind a member of the serpin protein family present in the salivary gland homogenate.


Vaccine | 2015

Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system

Daria Bottai; Wafa Frigui; Simon O. Clark; Emma Rayner; Andrea Zelmer; Nuria Andreu; Marien I. de Jonge; Gregory J. Bancroft; Ann Williams; Priscille Brodin; Roland Brosch

BACKGROUND Mycobacterium bovis BCG is presently the only available anti-tuberculosis vaccine used, worldwide. While BCG protects against miliary tuberculosis (TB) and tuberculoid meningitis in children, it often fails to protect against adult pulmonary TB. It is thus imperative that new improved anti-TB vaccines are developed. The integration of the ESX-1 secretion system, absent from BCG due to the deletion of region of difference 1 (RD1), into the genome of BCG has been shown to confer to BCG::ESX-1 enhanced protection against TB as compared to BCG. METHODS In the present study, to counterbalance the increase in virulence resulting from the integration of the RD1 region into BCG, we have constructed and evaluated several BCG::ESX-1 variants that carry selected amino-acid changes in the ESX-1-secreted antigen ESAT-6. In order to find the candidate that combines low virulence with high protective efficacy, these novel recombinant BCG::ESX-1 strains were tested for their virulence properties and their protective efficacy against Mycobacterium tuberculosis in two different animal models (mouse and guinea-pig). RESULTS Among several candidates tested, the BCG::ESAT-L28A/L29S strain, carrying modifications at residues Leu(28)-Leu(29) of the ESAT molecule, showed strong attenuation in mice and high protective efficiency both in mouse and guinea-pig vaccination-infection models. CONCLUSION This strain thus represents a promising candidate that merits further investigations and development. Our research also provides the proof of concept that selected ESX-1-complemented BCG strains may show low virulence and increased protective potential over parental strains.

Collaboration


Dive into the Wafa Frigui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge