Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre S. Rosado is active.

Publication


Featured researches published by Alexandre S. Rosado.


The ISME Journal | 2010

Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

Lia Cardoso Rocha Saraiva Teixeira; Raquel S. Peixoto; Juliano C. Cury; Woo Jun Sul; Vivian H. Pellizari; James M. Tiedje; Alexandre S. Rosado

The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.


Journal of Microbiological Methods | 1998

Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment

J. D. van Elsas; Gabriela Frois Duarte; Alexandre S. Rosado; Kornelia Smalla

As the use of biotechnology products, such as genetically modified microorganisms (GMMs), in the environment might bring about undesirable ecological effects, it is important that the environmental fate of inoculant organisms, as well as any effects of their release, are assessed. Ideally, pilot studies in microcosms or small mesocosms are thus performed prior to a larger-scale (commercial) application, and the results of these studies serve to guide further environmental use of the GMM. In these pilot studies, the methods employed to assess the environmental fate and effects of the GMM will have to be fine-tuned and optimized so as to assess these phenomena in an optimal way. This review examines the methods that are currently available for the assessment of the environmental fate of genetically modified and unmodified microorganisms, as well as the impact following their release. The emphasis will be on monitoring of these phenomena in soil, as a paradigm of assessments in complex environmental matrices. Detection methods based on cultivation, which generally rely on the use of added or intrinsic markers, serve to assess the fate of the culturable fractions of released microorganisms. The specificity of this detection can be enhanced by using a combination of cultivation-based and immunology- and/or DNA-based assessments. Furthermore, specific immunofluorescence or in situ hybridization techniques are suitable to quantify populations of GMMs at the level of microscopy-detectable cells, even though fluorescent in situ hybridization is still plagued by sensitivity problems in oligotrophic environments. Detection methods based on nucleic acids (DNA or RNA) extracted from the environment offer the possibility to monitor the fate of the heterologous genes released, including that following a horizontal gene transfer. Moreover, these methods can also provide a picture of the dynamics of the total numbers of microbial cells released. For a sound assessment of the biosafety of environmental releases, a polyphasic approach to environmental monitoring is recommended, as in most analyses information will be needed on the fate of culturable and nonculturable cells, as well as on that of the specific gene sequences released. Finally, the use of impact analysis via an array of different methods is briefly reviewed, and the merits of novel approaches to assessments of community structure via molecular means (PCR/DGGE, ARDRA or T-RFLP) and metabolic profiling via Biolog are discussed as methods specifically aimed at the detection of shifts in community structure and function (metabolic complement analysis).


PLOS ONE | 2011

Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution

Henrique F. Santos; Juliano C. Cury; Flávia L. Carmo; Adriana Lopes dos Santos; James M. Tiedje; Jan Dirk van Elsas; Alexandre S. Rosado; Raquel S. Peixoto

Background Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. Conclusions/Significance We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest.


Applied and Environmental Microbiology | 2001

Analysis of Bacterial Community Structure in Sulfurous-Oil-Containing Soils and Detection of Species Carrying Dibenzothiophene Desulfurization (dsz) Genes

Gabriela Frois Duarte; Alexandre S. Rosado; Lucy Seldin; Welington de Araujo; Jan Dirk van Elsas

ABSTRACT The selective effects of sulfur-containing hydrocarbons, with respect to changes in bacterial community structure and selection of desulfurizing organisms and genes, were studied in soil. Samples taken from a polluted field soil (A) along a concentration gradient of sulfurous oil and from soil microcosms treated with dibenzothiophene (DBT)-containing petroleum (FSL soil) were analyzed. Analyses included plate counts of total bacteria and of DBT utilizers, molecular community profiling via soil DNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and detection of genes that encode enzymes involved in the desulfurization of hydrocarbons, i.e., dszA, dszB, and dszC.Data obtained from the A soil showed no discriminating effects of oil levels on the culturable bacterial numbers on either medium used. Generally, counts of DBT degraders were 10- to 100-fold lower than the total culturable counts. However, PCR-DGGE showed that the numbers of bands detected in the molecular community profiles decreased with increasing oil content of the soil. Analysis of the sequences of three prominent bands of the profiles generated with the highly polluted soil samples suggested that the underlying organisms were related to Actinomyces sp.,Arthrobacter sp., and a bacterium of uncertain affiliation.dszA, dszB, and dszC genes were present in all A soil samples, whereas a range of unpolluted soils gave negative results in this analysis. Results from the study of FSL soil revealed minor effects of the petroleum-DBT treatment on culturable bacterial numbers and clear effects on the DBT-utilizing communities. The molecular community profiles were largely stable over time in the untreated soil, whereas they showed a progressive change over time following treatment with DBT-containing petroleum. Direct PCR assessment revealed the presence of dszB-related signals in the untreated FSL soil and the apparent selection of dszA- and dszC-related sequences by the petroleum-DBT treatment. PCR-DGGE applied to sequential enrichment cultures in DBT-containing sulfur-free basal salts medium prepared from the A and treated FSL soils revealed the selection of up to 10 distinct bands. Sequencing a subset of these bands provided evidence for the presence of organisms related to Pseudomonas putida, a Pseudomonassp., Stenotrophomonas maltophilia, and Rhodococcus erythropolis. Several of 52 colonies obtained from the A and FSL soils on agar plates with DBT as the sole sulfur source produced bands that matched the migration of bands selected in the enrichment cultures. Evidence for the presence of dszB in 12 strains was obtained, whereas dszA and dszC genes were found in only 7 and 6 strains, respectively. Most of the strains carrying dszA or dszC were classified asR. erythropolis related, and all revealed the capacity to desulfurize DBT. A comparison of 37 dszA sequences, obtained via PCR from the A and FSL soils, from enrichments of these soils, and from isolates, revealed the great similarity of all sequences to the canonical (R. erythropolis strain IGTS8)dszA sequence and a large degree of internal conservation. The 37 sequences recovered were grouped in three clusters. One group, consisting of 30 sequences, was minimally 98% related to the IGTS8 sequence, a second group of 2 sequences was slightly different, and a third group of 5 sequences was 95% similar. The first two groups contained sequences obtained from both soil types and enrichment cultures (including isolates), but the last consisted of sequences obtained directly from the polluted A soil.


FEMS Microbiology Ecology | 2004

Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms

Flavia F. Evans; Alexandre S. Rosado; Gina V. Sebastián; Renata Casella; Pedro Luiz Oliveira de Almeida Machado; Carola Holmström; Staffan Kjelleberg; Jan Dirk van Elsas; Lucy Seldin

The aim of this study was to analyse the effect of oil contamination and biostimulation (soil pH raise, and nitrogen, phosphate and sulphur addition) on the diversity of a bacterial community of an acidic Cambisol under Atlantic Forest. The experiment was based on the enumeration of bacterial populations and hydrocarbon degraders in microcosms through the use of conventional plating techniques and molecular fingerprinting of samples directly from the environment. PCR followed by denaturing gradient gel electrophoresis (DGGE) was used to generate microbial community fingerprints employing 16S rRNA gene as molecular marker. Biostimulation led to increases of soil pH (to 7.0) and of the levels of phosphorus and K, Ca, and Mg. Oil contamination caused an increase in soil organic carbon (170-190% higher than control soil). Total bacterial counts were stable throughout the experiment, while MPN counts of hydrocarbon degraders showed an increase in the biostimulated and oil-contaminated soil samples. Molecular fingerprinting performed with 16S rRNA gene PCR and DGGE analysis revealed stable patterns along the 360 days of experiment, showing little change in oil-contaminated microcosms after 90 days. The DGGE patterns of the biostimulated samples showed severe changes due to decreases in the number of bands as compared to the control samples as from 15 days after addition of nutrients to the soil. Results obtained in the present study indicate that the addition of inorganic compounds to soil in conjunction with oil contamination has a greater impact on the bacterial community than oil contamination only.


Journal of Microbiological Methods | 1998

Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

Gabriela Frois Duarte; Alexandre S. Rosado; Lucy Seldin; A.C. Keijzer-Wolters; Jan Dirk van Elsas

A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils of different texture. DNA and rRNA yields from these soils were 15-30 and 0.25-1.0 μg g-1 soil, respectively. Following different purification steps, the rRNA as well as genomic DNA extracts obtained were sufficiently pure for either reverse transcription and polymerase chain reaction (PCR) amplification, or direct PCR amplification. Using a set of universal bacterial primers based on conserved regions of the 16S rRNA sequence, both approaches yielded mixed target molecules for subsequent denaturing gradient gel electrophoresis fingerprinting of soil microbial diversity. The amplified rRNA-based bacterial diversity assessment was compared with diversity assessments based on amplified DNA in one selected soil. Results showed similarities as well as differences between the profiles generated on the basis of rRNA and those based on genomic DNA, which suggested that the bacterial communities defined on the basis of their genomic DNA contained variable amounts of rRNA. Copyright (C) 1998 Elsevier Science B.V.


Environmental Science & Technology | 2012

Effect of different operational conditions on biofilm development, nitrification, and nitrifying microbial population in moving-bed biofilm reactors.

J.P. Bassin; Robbert Kleerebezem; Alexandre S. Rosado; M.C.M. van Loosdrecht; Márcia Dezotti

In this study, the effect of different operational conditions on biofilm development and nitrification in three moving-bed biofilm reactors (MBBRs) was investigated: two reactors were operated in a continuously fed regime and one in sequencing-batch mode. The presence of organic carbon reduced the time required to form stable nitrifying biofilms. Subsequent stepwise reduction of influent COD caused a decrease in total polysaccharide and protein content, which was accompanied by a fragmentation of the biofilm, as shown by scanning electron microscopy, and by an enrichment of the biofilm for nitrifiers, as observed by fluorescent in situ hybridization (FISH) analysis. Polysaccharide and protein concentrations proved to be good indicators of biomass development and detachment in MBBR systems. Ammonium- and nitrite-oxidizing bacteria activities were affected when a pulse feeding of 4 g of NH(4)-N/(m(2)·day) was applied. Free nitrous acid and free ammonia were likely the inhibitors for ammonium- and nitrite-oxidizing bacteria.


Applied and Environmental Microbiology | 2009

Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters

C. C. P. Hardoim; Rodrigo Costa; Fábio Vieira de Araújo; E. Hajdu; Raquel S. Peixoto; Ulysses Lins; Alexandre S. Rosado; J. D. van Elsas

ABSTRACT Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.


PLOS ONE | 2011

Comparing the Bacterial Diversity of Acute and Chronic Dental Root Canal Infections

Adriana Lopes dos Santos; José F. Siqueira; Isabela N. Rôças; Ederson da Conceição Jesus; Alexandre S. Rosado; James M. Tiedje

This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections.


Brazilian Journal of Microbiology | 2013

Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage

Analy Machado de Oliveira Leite; Marco Antônio Lemos Miguel; Raquel S. Peixoto; Alexandre S. Rosado; Joab Trajano Silva; Vania Paschoalin

Kefir is a fermented milk beverage produced by the action of bacteria and yeasts that exist in symbiotic association in kefir grains. The artisanal production of the kefir is based on the tradition of the peoples of Caucasus, which has spread to other parts of the world, from the late 19th century, and nowadays integrates its nutritional and therapeutic indications to the everyday food choices of several populations. The large number of microorganisms present in kefir and their microbial interactions, the possible bioactive compounds resulting of microbial metabolism, and the benefits associated with the use this beverage confers kefir the status of a natural probiotic, designated as the 21th century yoghurt. Several studies have shown that kefir and its constituents have antimicrobial, antitumor, anticarcinogenic and immunomodulatory activity and also improve lactose digestion, among others. This review includes data on the technological aspects, the main beneficial effects on human health of kefir and its microbiological composition. Generally, kefir grains contain a relatively stable and specific microbiota enclosed in a matrix of polysaccharides and proteins. Microbial interactions in kefir are complex due to the composition of kefir grains, which seems to differ among different studies, although some predominant Lactobacillus species are always present. Besides, the specific populations of individual grains seem to contribute to the particular sensory characteristics present in fermented beverages. This review also includes new electron microscopy data on the distribution of microorganisms within different Brazilian kefir grains, which showed a relative change in its distribution according to grain origin.

Collaboration


Dive into the Alexandre S. Rosado's collaboration.

Top Co-Authors

Avatar

Raquel S. Peixoto

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Lucy Seldin

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Flávia L. Carmo

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrique F. Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Hugo Emiliano de Jesus

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Dennis de Carvalho Ferreira

Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior

View shared research outputs
Top Co-Authors

Avatar

Caio T. C. C. Rachid

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Juliano C. Cury

Universidade Federal de São João del-Rei

View shared research outputs
Top Co-Authors

Avatar

R.S. Peixoto

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge