Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel S. Peixoto is active.

Publication


Featured researches published by Raquel S. Peixoto.


The ISME Journal | 2010

Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

Lia Cardoso Rocha Saraiva Teixeira; Raquel S. Peixoto; Juliano C. Cury; Woo Jun Sul; Vivian H. Pellizari; James M. Tiedje; Alexandre S. Rosado

The Antarctic is a pristine environment that contributes to the maintenance of the global climate equilibrium. The harsh conditions of this habitat are fundamental to selecting those organisms able to survive in such an extreme habitat and able to support the relatively simple ecosystems. The DNA of the microbial community associated with the rhizospheres of Deschampsia antarctica Desv (Poaceae) and Colobanthus quitensis (Kunth) BartI (Caryophyllaceae), the only two native vascular plants that are found in Antarctic ecosystems, was evaluated using a 16S rRNA multiplex 454 pyrosequencing approach. This analysis revealed similar patterns of bacterial diversity between the two plant species from different locations, arguing against the hypothesis that there would be differences between the rhizosphere communities of different plants. Furthermore, the phylum distribution presented a peculiar pattern, with a bacterial community structure different from those reported of many other soils. Firmicutes was the most abundant phylum in almost all the analyzed samples, and there were high levels of anaerobic representatives. Also, some phyla that are dominant in most temperate and tropical soils, such as Acidobacteria, were rarely found in the analyzed samples. Analyzing all the sample libraries together, the predominant genera found were Bifidobacterium (phylum Actinobacteria), Arcobacter (phylum Proteobacteria) and Faecalibacterium (phylum Firmicutes). To the best of our knowledge, this is the first major bacterial sequencing effort of this kind of soil, and it revealed more than expected diversity within these rhizospheres of both maritime Antarctica vascular plants in Admiralty Bay, King George Island, which is part of the South Shetlands archipelago.


PLOS ONE | 2011

Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution

Henrique F. Santos; Juliano C. Cury; Flávia L. Carmo; Adriana Lopes dos Santos; James M. Tiedje; Jan Dirk van Elsas; Alexandre S. Rosado; Raquel S. Peixoto

Background Mangroves are transitional coastal ecosystems in tropical and sub-tropical regions and represent biologically important and productive ecosystems. Despite their great ecological and economic importance, mangroves are often situated in areas of high anthropogenic influence, being exposed to pollutants, such as those released by oil spills. Methodology/Principal Findings A microcosm experiment was conducted, which simulated an oil spill in previously pristine mangrove sediment. The effect of the oil spill on the extant microbial community was studied using direct pyrosequencing. Extensive bacterial diversity was observed in the pristine mangrove sediment, even after oil contamination. The number of different OTUs only detected in contaminated samples was significantly higher than the number of OTUs only detected in non-contaminated samples. The phylum Proteobacteria, in particular the classes Gammaproteobacteria and Deltaproteobacteria, were prevalent before and after the simulated oil spill. On the other hand, the order Chromatiales and the genus Haliea decreased upon exposure to 2 and 5% oil, these are proposed as sensitive indicators of oil contamination. Three other genera, Marinobacterium, Marinobacter and Cycloclasticus increased their prevalence when confronted with oil. These groups are possible targets for the biomonitoring of the impact of oil in mangrove settings. Conclusions/Significance We suggest the use of sequences of the selected genera as proxies for oil pollution, using qPCR assessments. The quantification of these genera in distinct mangrove systems in relation to the local oil levels would permit the evaluation of the level of perturbance of mangroves, being useful in field monitoring. Considering the importance of mangroves to many other environments and the susceptibility of such areas to oil spills this manuscript will be of broad interest.


Food Microbiology | 2012

Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis

A.M.O. Leite; Baltasar Mayo; Caio T. C. C. Rachid; Raquel S. Peixoto; Joab Trajano Silva; Vania Paschoalin; Susana Delgado

The microbial diversity and community structure of three different kefir grains from different parts of Brazil were examined via the combination of two culture-independent methods: PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. PCR-DGGE showed Lactobacillus kefiranofaciens and Lactobacillus kefiri to be the major bacterial populations in all three grains. The yeast community was dominated by Saccharomyces cerevisiae. Pyrosequencing produced a total of 14,314 partial 16S rDNA sequence reads from the three grains. Sequence analysis grouped the reads into three phyla, of which Firmicutes was dominant. Members of the genus Lactobacillus were the most abundant operational taxonomic units (OTUs) in all samples, accounting for up to 96% of the sequences. OTUs belonging to other lactic and acetic acid bacteria genera, such as Lactococcus, Leuconostoc, Streptococcus and Acetobacter, were also identified at low levels. Two of the grains showed identical DGGE profiles and a similar number of OTUs, while the third sample showed the highest diversity by both techniques. Pyrosequencing allowed the identification of bacteria that were present in small numbers and rarely associated with the microbial community of this complex ecosystem.


Applied and Environmental Microbiology | 2009

Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters

C. C. P. Hardoim; Rodrigo Costa; Fábio Vieira de Araújo; E. Hajdu; Raquel S. Peixoto; Ulysses Lins; Alexandre S. Rosado; J. D. van Elsas

ABSTRACT Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.


Brazilian Journal of Microbiology | 2013

Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage

Analy Machado de Oliveira Leite; Marco Antônio Lemos Miguel; Raquel S. Peixoto; Alexandre S. Rosado; Joab Trajano Silva; Vania Paschoalin

Kefir is a fermented milk beverage produced by the action of bacteria and yeasts that exist in symbiotic association in kefir grains. The artisanal production of the kefir is based on the tradition of the peoples of Caucasus, which has spread to other parts of the world, from the late 19th century, and nowadays integrates its nutritional and therapeutic indications to the everyday food choices of several populations. The large number of microorganisms present in kefir and their microbial interactions, the possible bioactive compounds resulting of microbial metabolism, and the benefits associated with the use this beverage confers kefir the status of a natural probiotic, designated as the 21th century yoghurt. Several studies have shown that kefir and its constituents have antimicrobial, antitumor, anticarcinogenic and immunomodulatory activity and also improve lactose digestion, among others. This review includes data on the technological aspects, the main beneficial effects on human health of kefir and its microbiological composition. Generally, kefir grains contain a relatively stable and specific microbiota enclosed in a matrix of polysaccharides and proteins. Microbial interactions in kefir are complex due to the composition of kefir grains, which seems to differ among different studies, although some predominant Lactobacillus species are always present. Besides, the specific populations of individual grains seem to contribute to the particular sensory characteristics present in fermented beverages. This review also includes new electron microscopy data on the distribution of microorganisms within different Brazilian kefir grains, which showed a relative change in its distribution according to grain origin.


Letters in Applied Microbiology | 2002

Use of rpoB and 16S rRNA genes to analyse bacterial diversity of a tropical soil using PCR and DGGE

Raquel S. Peixoto; H.L. da Costa Coutinho; Norma Gouvêa Rumjanek; Andrew Macrae; Alexandre S. Rosado

Aim: To evaluate the rpoB gene as a biomarker for PCR‐DGGE microbial analyses using soil DNA from the Cerrado, Brazil. 
Methods: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. 
Results: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. 
Conclusions, Significance and Impact of the Study: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.


Current Genomics | 2014

Impact of Next Generation Sequencing Techniques in Food Microbiology

Baltasar Mayo; Caio T. C. C. Rachid; Angel Alegría; Analy Machado de Oliveira Leite; Raquel S. Peixoto; Susana Delgado

Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety.


Journal of Dairy Science | 2015

Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains

Analy Machado de Oliveira Leite; Marco Antônio Lemos Miguel; Raquel S. Peixoto; Patricia Ruas-Madiedo; Vânia Margaret Flosi Paschoalin; Baltasar Mayo; Susana Delgado

A total of 34 lactic acid bacteria isolates from 4 different Brazilian kefir grains were identified and characterized among a group of 150 isolates, using the ability to tolerate acidic pH and resistance to bile salts as restrictive criteria for probiotic potential. All isolates were identified by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of representative amplicons. Eighteen isolates belonged to the species Leuconostoc mesenteroides, 11 to Lactococcus lactis (of which 8 belonged to subspecies cremoris and 3 to subspecies lactis), and 5 to Lactobacillus paracasei. To exclude replicates, a molecular typing analysis was performed by combining repetitive extragenic palindromic-PCR and random amplification of polymorphic DNA techniques. Considering a threshold of 90% similarity, 32 different strains were considered. All strains showed some antagonistic activity against 4 model food pathogens. In addition, 3 Lc. lactis strains and 1 Lb. paracasei produced bacteriocin-like inhibitory substances against at least 2 indicator organisms. Moreover, 1 Lc. lactis and 2 Lb. paracasei presented good total antioxidative activity. None of these strains showed undesirable enzymatic or hemolytic activities, while proving susceptible or intrinsically resistant to a series of clinically relevant antibiotics. The Lb. paracasei strain MRS59 showed a level of adhesion to human Caco-2 epithelial cells comparable with that observed for Lactobacillus rhamnosus GG. Taken together, these properties allow the MRS59 strain to be considered a promising probiotic candidate.


The ISME Journal | 2014

Climate change affects key nitrogen-fixing bacterial populations on coral reefs

Henrique F. Santos; Flávia L. Carmo; Gustavo Adolpho Santos Duarte; Francisco Dini-Andreote; Clovis Barreira e Castro; Alexandre S. Rosado; Jan Dirk van Elsas; Raquel S. Peixoto

Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean’s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs.


Journal of Endodontics | 2009

Bacterial community profiling of cryogenically ground samples from the apical and coronal root segments of teeth with apical periodontitis.

Flávio R.F. Alves; José F. Siqueira; Flávia L. Carmo; Adriana Lopes dos Santos; Raquel S. Peixoto; Isabela N. Rôças; Alexandre S. Rosado

Bacteria located at the apical part of infected root canals are arguably directly involved in the pathogenesis of apical periodontitis. This study was conducted to profile and further compare the bacterial communities established at the apical and middle/coronal segments of infected root canals. Extracted teeth with attached apical periodontitis lesions were sectioned so as to obtain two root fragments representing the apical third and the coronal two thirds. Root fragments were subjected to a cryogenic grinding approach. DNA was extracted from root powder samples and used as a template for bacterial community profiling using a 16S ribosomal RNA gene-based seminested polymerase chain reaction/denaturing gradient gel electrophoresis approach. The mean number of bands in apical samples from teeth with primary infections was 28, ranging from 18 to 48, whereas in the middle/coronal samples, it was also 28, ranging from 19 to 36. Findings showed that the profile of bacterial community colonizing the apical third of infected root canals is as diverse as that occurring at the middle/coronal thirds. A high variability was observed for both interindividual (samples from the same region but from different patients) and intraindividual (samples from different regions of the same tooth) comparisons. The methodology used to prepare and analyze samples was highly effective in disclosing a previously unanticipated broad diversity of endodontic bacterial communities, especially at the apical part of infected root canals.

Collaboration


Dive into the Raquel S. Peixoto's collaboration.

Top Co-Authors

Avatar

Alexandre S. Rosado

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Flávia L. Carmo

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Caio T. C. C. Rachid

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Hugo Emiliano de Jesus

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Henrique F. Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Juliano C. Cury

Universidade Federal de São João del-Rei

View shared research outputs
Top Co-Authors

Avatar

Lucy Seldin

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diogo Jurelevicius

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Clovis Barreira e Castro

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge