Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Seillier is active.

Publication


Featured researches published by Alexandre Seillier.


European Journal of Neuroscience | 2009

WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.

David A. Price; Alex Martinez; Alexandre Seillier; Wouter Koek; Yolanda P. Villarreal Acosta; Elizabeth Fernandez; Randy Strong; Beat Lutz; Giovanni Marsicano; James L. Roberts; Andrea Giuffrida

Parkinson’s disease (PD) is characterized by the progressive loss of nigrostriatal dopamine neurons leading to motor disturbances and cognitive impairment. Current pharmacotherapies relieve PD symptoms temporarily but fail to prevent or slow down the disease progression. In this study, we investigated the molecular mechanisms by which the non‐selective cannabinoid receptor agonist WIN55,212‐2 (WIN) protects mouse nigrostriatal neurons from 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced neurotoxicity and neuroinflammation. Stereological analyses showed that chronic treatment with WIN (4 mg/kg, intraperitoneal), initiated 24 h after MPTP administration, protected against MPTP‐induced loss of tyrosine hydroxylase‐positive neurons in the substantia nigra pars compacta independently of CB1 cannabinoid receptor activation. The neuroprotective effect of WIN was accompanied by increased dopamine and 3,4‐dihydroxyphenylacetic acid levels in the substantia nigra pars compacta and dorsal striatum of MPTP‐treated mice. At 3 days post‐MPTP, we found significant microglial activation and up‐regulation of CB2 cannabinoid receptors in the ventral midbrain. Treatment with WIN or the CB2 receptor agonist JWH015 (4 mg/kg, intraperitoneal) reduced MPTP‐induced microglial activation, whereas genetic ablation of CB2 receptors exacerbated MPTP systemic toxicity. Furthermore, chronic WIN reversed MPTP‐associated motor deficits, as revealed by the analysis of forepaw step width and percentage of faults using the inverted grid test. In conclusion, our data indicate that agonism at CB2 cannabinoid receptors protects against MPTP‐induced nigrostriatal degeneration by inhibiting microglial activation/infiltration and suggest that CB2 receptors represent a new therapeutic target to slow the degenerative process occurring in PD.


The Journal of Experimental Biology | 2012

Wired to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the ‘runner’s high’

David A. Raichlen; Adam D. Foster; Gregory L. Gerdeman; Alexandre Seillier; Andrea Giuffrida

SUMMARY Humans report a wide range of neurobiological rewards following moderate and intense aerobic activity, popularly referred to as the ‘runner’s high’, which may function to encourage habitual aerobic exercise. Endocannabinoids (eCBs) are endogenous neurotransmitters that appear to play a major role in generating these rewards by activating cannabinoid receptors in brain reward regions during and after exercise. Other species also regularly engage in endurance exercise (cursorial mammals), and as humans share many morphological traits with these taxa, it is possible that exercise-induced eCB signaling motivates habitual high-intensity locomotor behaviors in cursorial mammals. If true, then neurobiological rewards may explain variation in habitual locomotor activity and performance across mammals. We measured circulating eCBs in humans, dogs (a cursorial mammal) and ferrets (a non-cursorial mammal) before and after treadmill exercise to test the hypothesis that neurobiological rewards are linked to high-intensity exercise in cursorial mammals. We show that humans and dogs share significantly increased exercise-induced eCB signaling following high-intensity endurance running. eCB signaling does not significantly increase following low-intensity walking in these taxa, and eCB signaling does not significantly increase in the non-cursorial ferrets following exercise at any intensity. This study provides the first evidence that inter-specific variation in neurotransmitter signaling may explain differences in locomotor behavior among mammals. Thus, a neurobiological reward for endurance exercise may explain why humans and other cursorial mammals habitually engage in aerobic exercise despite the higher associated energy costs and injury risks, and why non-cursorial mammals avoid such locomotor behaviors.


Behavioural Brain Research | 2009

Evaluation of NMDA receptor models of schizophrenia: Divergences in the behavioral effects of sub-chronic PCP and MK-801

Alexandre Seillier; Andrea Giuffrida

The hypothesis of hypo-functionality of NMDA receptors in schizophrenia originates from the observation that administration of the NMDA antagonist phencyclidine (PCP) induces psychotic states that closely resemble schizophrenic symptoms and that persist after drug discontinuation. A large number of animal studies have used PCP and the NMDA antagonist dizocilpine (MK-801) almost interchangeably to model schizophrenia. However, PCP interacts with pharmacological targets other than NMDA receptors that are not affected by MK-801. In addition, although acute administration of either compound produces similar effects in animals, there is little information whether withdrawal from chronic MK-801 causes behavioral deficits that mimic schizophrenia symptoms as in the case of PCP. To clarify this issue, we compared the following behaviors in rats subjected to withdrawal from sub-chronic administration (2 x 7 days) of either PCP (5 mg/kg, i.p.) or MK-801 (0.5 mg/kg, i.p.): (1) working memory in a variable-delayed alternation task in a T-maze, (2) social interaction, and (3) motor activity in response to a (a) novel environment, (b) mild stressor, and (c) d-amphetamine challenge. Withdrawal from sub-chronic PCP caused a delay-dependent impairment of working memory, reduced social interaction and enhanced d-amphetamine-induced motor activity. These results were not replicated in animals sub-chronically treated with MK-801, which displayed only a slight decrease in social interaction. These data suggest that pharmacological antagonism at NMDA receptors is not sufficient to explain the full spectrum of PCP psychotomimetic properties.


European Journal of Applied Physiology | 2013

Exercise-induced endocannabinoid signaling is modulated by intensity

David A. Raichlen; Adam D. Foster; Alexandre Seillier; Andrea Giuffrida; Gregory L. Gerdeman

Endocannabinoids (eCB) are endogenous ligands for cannabinoid receptors that are densely expressed in brain networks responsible for reward. Recent work shows that exercise activates the eCB system in humans and other mammals, suggesting eCBs are partly responsible for the reported improvements in mood and affect following aerobic exercise in humans. However, exercise-induced psychological changes reported by runners are known to be dependent on exercise intensity, suggesting that any underlying molecular mechanism should also change with varying levels of exercise intensity. Here, we examine circulating levels of eCBs following aerobic exercise (treadmill running) in recreationally fit human runners at four different intensities. We show that eCB signaling is indeed intensity dependent, with significant changes in circulating eCBs observed following moderate intensities only (very high and very low intensity exercises do not significantly alter circulating eCB levels). Our results are consistent with intensity-dependent psychological state changes with exercise and therefore support the hypothesis that eCB activity is related to neurobiological effects of exercise. Thus, future studies examining the role of exercise-induced eCB signaling on neurobiology or physiology must take exercise intensity into account.


Neuropsychopharmacology | 2013

Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB 1 Receptors: Implications for Schizophrenia

Alexandre Seillier; Alex Martinez; Andrea Giuffrida

The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2012

Acetaminophen Differentially Enhances Social Behavior and Cortical Cannabinoid Levels in Inbred Mice

Georgianna G. Gould; Alexandre Seillier; Gabriela Weiss; Andrea Giuffrida; Teresa F. Burke; Julie G. Hensler; Amanda Tristan; Lance R. McMahon; Alexander Salazar; Jason C. O'Connor; Neera Satsangi; Rajiv K. Satsangi; Ting Ting Gu; Keenan Treat; Corey M. Smolik; Stephen T. Schultz

Supratherapeutic doses of the analgesic acetaminophen (paracetomol) are reported to promote social behavior in Swiss mice. However, we hypothesized that it might not promote sociability in other strains due to cannabinoid CB(1) receptor-mediated inhibition of serotonin (5-HT) transmission in the frontal cortex. We examined the effects of acetaminophen on social and repetitive behaviors in comparison to a cannabinoid agonist, WIN 55,212-2, in two strains of socially-deficient mice, BTBR and 129S1/SvImJ (129S). Acetaminophen (100mg/kg) enhanced social interactions in BTBR, and social novelty preference and marble burying in 129S at serum levels of ≥70 ng/ml. Following acetaminophen injection or sociability testing, anandamide (AEA) increased in BTBR frontal cortex, while behavior testing increased 2-arachidonyl glycerol (2-AG) levels in 129S frontal cortex. In contrast, WIN 55,212-2 (0.1mg/kg) did not enhance sociability. Further, we expected CB(1)-deficient (+/-) mice to be less social than wild-type, but instead found similar sociability. Given strain differences in endocannabinoid response to acetaminophen, we compared cortical CB(1) and 5-HT(1A) receptor density and function relative to sociable C57BL/6 mice. CB(1) receptor saturation binding (Bmax=958±117 fmol/mg protein), and affinity for [(3)H] CP55,940 (K(D)=3±0.8 nM) was similar in frontal cortex among strains. CP55,940-stimulated [(35)S] GTPγS binding in cingulate cortex was 136±12, 156±22, and 75±9% above basal in BTBR, 129S and C57BL/6 mice. The acetaminophen metabolite para-aminophenol (1 μM) failed to stimulate [(35)S] GTPγS binding. Hence, it appears that other indirect actions of acetaminophen, including 5-HT receptor agonism, may underlie its sociability promoting properties outweighing any CB(1) mediated suppression by locally-elevated endocannabinoids in these mice.


Neurobiology of Disease | 2015

Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats.

Aa Martinez; Mg Morgese; A Pisanu; Teresa Macheda; Ma Paquette; Alexandre Seillier; Tommaso Cassano; Annarosa Carta; Andrea Giuffrida

Long-term administration of l-3,4-dihydroxyphenylalanine (levodopa), the mainstay treatment for Parkinsons disease (PD), is accompanied by fluctuations in its duration of action and motor complications (dyskinesia) that dramatically affect the quality of life of patients. Levodopa-induced dyskinesias (LID) can be modeled in rats with unilateral 6-OHDA lesions via chronic administration of levodopa, which causes increasingly severe axial, limb, and orofacial abnormal involuntary movements (AIMs) over time. In previous studies, we showed that the direct activation of CB1 cannabinoid receptors alleviated rat AIMs. Interestingly, elevation of the endocannabinoid anandamide by URB597 (URB), an inhibitor of endocannabinoid catabolism, produced an anti-dyskinetic response that was only partially mediated via CB1 receptors and required the concomitant blockade of transient receptor potential vanilloid type-1 (TRPV1) channels by capsazepine (CPZ) (Morgese et al., 2007). In this study, we showed that the stimulation of peroxisome proliferator-activated receptors (PPAR), a family of transcription factors activated by anandamide, contributes to the anti-dyskinetic effects of URB+CPZ, and that the direct activation of the PPARγ subtype by rosiglitazone (RGZ) alleviates levodopa-induced AIMs in 6-OHDA rats. AIM reduction was associated with an attenuation of levodopa-induced increase of dynorphin, zif-268, and of ERK phosphorylation in the denervated striatum. RGZ treatment did not decrease striatal levodopa and dopamine bioavailability, nor did it affect levodopa anti-parkinsonian activity. Collectively, these data indicate that PPARγ may represent a new pharmacological target for the treatment of LID.


Pharmacology, Biochemistry and Behavior | 2014

The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184

Alexandre Seillier; David D Aguilar; Andrea Giuffrida

The biological actions of the endocannabinoids anandamide and 2-arachidonoyl glycerol (2-AG) are terminated by enzymatic hydrolysis of these lipids via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. While several selective FAAH inhibitors have been developed and characterized in vitro and in vivo, none of the initial MAGL blockers have shown adequate potency and specificity for in vivo applications. More recently, a selective MAGL inhibitor, JZL184, has been shown to produce a long-lasting elevation of brain 2-AG, as well as cannabinoid-like behavioral responses in mice. However, its effectiveness in rats remains controversial. Indeed, although JZL184 can elicit behavioral responses that are mediated, at least in part, via activation of cannabinoid CB1 receptors, several reports indicate that this compound does not alter 2-AG levels in this species. In this study we compared the behavioral and neurochemical effects of JZL 184 with those of the dual FAAH/MAGL inhibitor JZL195, and showed that systemic administration of the former can selectively elevate brain 2-AG in rats and produce motor suppression through a CB1-independent mechanism. These findings indicate that, despite its lower potency against rat MAGL, JZL184 can be used to enhance 2-AG transmission and elicit behavioral responses in rodents.


Behavioural Brain Research | 2007

Contribution of corticosterone to cued versus contextual fear in rats

Alain R. Marchand; Alexandra Barbelivien; Alexandre Seillier; Karine Herbeaux; Alain Sarrieau; Monique Majchrzak

Several studies have suggested a positive relationship between circulating corticosterone levels and contextual conditioning. However, a positive relationship between circulating corticosterone levels and cued conditioning has also been reported. This study further investigates the relationship between corticosterone and fear conditioning by modulating the predictive value of contextual and discrete tone cues in separate groups of rats. In a first experiment in which training parameters were chosen to induce strong conditioning (five foot-shocks), we used a correlational approach and investigated whether post-training corticosterone levels were related to subsequent expression of contextual and/or tone fear. In a second experiment, in which training parameters were chosen to induce lower conditioning (one and two foot-shocks), we investigated whether a post-training corticosterone injection enhanced the consolidation of contextual and/or tone conditioning. In the first experiment, the highest post-training corticosterone levels were obtained in rats trained with paired tones and shocks. Post-training corticosterone levels tended to be positively correlated with freezing scores during the tone-fear test and were negatively correlated with freezing scores during training although not during the context-fear test. In the second experiment, a post-training injection of corticosterone (3mg/kg) had no effect on subsequent freezing to contextual cues and to a tone that did not predict shock, whereas it was efficient in increasing fear conditioned to a predictive tone. Globally, these results suggest that the predictive value of the conditioned stimulus may be the main determinant of the facilitatory action of acutely enhanced corticosterone in fear conditioning.


Journal of Pharmacology and Experimental Therapeutics | 2015

Simultaneous Inhibition of Fatty Acid Amide Hydrolase and Monoacylglycerol Lipase Shares Discriminative Stimulus Effects with Δ9-Tetrahydrocannabinol in Mice

Lenka Hruba; Alexandre Seillier; Armia Zaki; Benjamin F. Cravatt; Aron H. Lichtman; Andrea Giuffrida; Lance R. McMahon

Monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) inhibitors exert preclinical effects indicative of therapeutic potential (i.e., analgesia). However, the extent to which MAGL and FAAH inhibitors produce unwanted effects remains unclear. Here, FAAH and MAGL inhibition was examined separately and together in a Δ9-tetrahydrocannabinol (Δ9-THC; 5.6 mg/kg i.p.) discrimination assay predictive of subjective effects associated with cannabis use, and the relative contribution of N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the prefrontal cortex, hippocampus, and caudate putamen to those effects was examined. Δ9-THC dose-dependently increased Δ9-THC appropriate responses (ED50 value = 2.8 mg/kg), whereas the FAAH inhibitors PF-3845 [N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide] and URB597 [(3′-(aminocarbonyl)[1,1′-biphenyl]-3-yl)-cyclohexylcarbamate] or a MAGL inhibitor JZL184 [4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate] alone did not substitute for the Δ9-THC discriminative stimulus. The nonselective FAAH/MAGL inhibitors SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] and JZL195 [4-nitrophenyl 4-(3-phenoxybenzyl)piperazine-1-carboxylate] fully substituted for Δ9-THC with ED50 values equal to 2.4 and 17 mg/kg, respectively. Full substitution for Δ9-THC was also produced by a combination of JZL184 and PF-3845, but not by a combination of JZL184 and URB597 (i.e., 52% maximum). Cannabinoid receptor type 1 antagonist rimonabant attenuated the discriminative stimulus effects of Δ9-THC, SA-57, JZL195, and the combined effects of JZL184 and PF-3845. Full substitution for the Δ9-THC discriminative stimulus occurred only when both 2-AG and AEA were significantly elevated, and the patterns of increased endocannabinoid content were similar among brain regions. Overall, these results suggest that increasing both endogenous 2-AG and AEA produces qualitatively unique effects (i.e., the subjective effects of cannabis) that are not obtained from increasing either 2-AG or AEA separately.

Collaboration


Dive into the Alexandre Seillier's collaboration.

Top Co-Authors

Avatar

Andrea Giuffrida

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Monique Majchrzak

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Karine Herbeaux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Martinez

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie G. Hensler

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Lance R. McMahon

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge