David A. Raichlen
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David A. Raichlen.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Michael D. Sockol; David A. Raichlen; Herman Pontzer
Bipedal walking is evident in the earliest hominins [Zollikofer CPE, Ponce de Leon MS, Lieberman DE, Guy F, Pilbeam D, et al. (2005) Nature 434:755–759], but why our unique two-legged gait evolved remains unknown. Here, we analyze walking energetics and biomechanics for adult chimpanzees and humans to investigate the long-standing hypothesis that bipedalism reduced the energy cost of walking compared with our ape-like ancestors [Rodman PS, McHenry HM (1980) Am J Phys Anthropol 52:103–106]. Consistent with previous work on juvenile chimpanzees [Taylor CR, Rowntree VJ (1973) Science 179:186–187], we find that bipedal and quadrupedal walking costs are not significantly different in our sample of adult chimpanzees. However, a more detailed analysis reveals significant differences in bipedal and quadrupedal cost in most individuals, which are masked when subjects are examined as a group. Furthermore, human walking is ≈75% less costly than both quadrupedal and bipedal walking in chimpanzees. Variation in cost between bipedal and quadrupedal walking, as well as between chimpanzees and humans, is well explained by biomechanical differences in anatomy and gait, with the decreased cost of human walking attributable to our more extended hip and a longer hindlimb. Analyses of these features in early fossil hominins, coupled with analyses of bipedal walking in chimpanzees, indicate that bipedalism in early, ape-like hominins could indeed have been less costly than quadrupedal knucklewalking.
PLOS ONE | 2012
Herman Pontzer; David A. Raichlen; Brian M. Wood; Audax Mabulla; Susan B. Racette; Frank W. Marlowe
Western lifestyles differ markedly from those of our hunter-gatherer ancestors, and these differences in diet and activity level are often implicated in the global obesity pandemic. However, few physiological data for hunter-gatherer populations are available to test these models of obesity. In this study, we used the doubly-labeled water method to measure total daily energy expenditure (kCal/day) in Hadza hunter-gatherers to test whether foragers expend more energy each day than their Western counterparts. As expected, physical activity level, PAL, was greater among Hadza foragers than among Westerners. Nonetheless, average daily energy expenditure of traditional Hadza foragers was no different than that of Westerners after controlling for body size. The metabolic cost of walking (kcal kg−1 m−1) and resting (kcal kg−1 s−1) were also similar among Hadza and Western groups. The similarity in metabolic rates across a broad range of cultures challenges current models of obesity suggesting that Western lifestyles lead to decreased energy expenditure. We hypothesize that human daily energy expenditure may be an evolved physiological trait largely independent of cultural differences.
The Journal of Experimental Biology | 2009
Herman Pontzer; John H. Holloway; David A. Raichlen; Daniel E. Lieberman
SUMMARY We investigated the control and function of arm swing in human walking and running to test the hypothesis that the arms act as passive mass dampers powered by movement of the lower body, rather than being actively driven by the shoulder muscles. We measured locomotor cost, deltoid muscle activity and kinematics in 10 healthy adult subjects while walking and running on a treadmill in three experimental conditions: control; no arms (arms folded across the chest); and arm weights (weights worn at the elbow). Decreasing and increasing the moment of inertia of the upper body in no arms and arm weights conditions, respectively, had corresponding effects on head yaw and on the phase differences between shoulder and pelvis rotation, consistent with the view of arms as mass dampers. Angular acceleration of the shoulders and arm increased with torsion of the trunk and shoulder, respectively, but angular acceleration of the shoulders was not inversely related to angular acceleration of the pelvis or arm. Restricting arm swing in no arms trials had no effect on locomotor cost. Anterior and posterior portions of the deltoid contracted simultaneously rather than firing alternately to drive the arm. These results support a passive arm swing hypothesis for upper body movement during human walking and running, in which the trunk and shoulders act primarily as elastic linkages between the pelvis, shoulder girdle and arms, the arms act as passive mass dampers which reduce torso and head rotation, and upper body movement is primarily powered by lower body movement.
Proceedings of the National Academy of Sciences of the United States of America | 2014
David A. Raichlen; Brian M. Wood; Adam D. Gordon; Audax Mabulla; Frank W. Marlowe; Herman Pontzer
Significance Lévy walks are a random walk search strategy used by a wide variety of organisms when searching for heterogeneously distributed food. This type of search involves mostly short move steps (defined as the distance traveled before pausing or changing direction) combined with rarer longer move steps. Here, we show that the Hadza, hunter–gatherers from northern Tanzania, perform Lévy walks when foraging for a wide variety of food items, suggesting that Lévy walks are an important movement pattern for the most cognitively complex foragers on Earth. Our results suggest that scale-invariant, superdiffusive movement profiles are a fundamental feature of human landscape use, regardless of the physical or cultural environment, and may have played an important role in the evolution of human mobility. When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter–gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.
The Journal of Experimental Biology | 2006
Daniel E. Lieberman; David A. Raichlen; Herman Pontzer; Dennis M. Bramble; Elizabeth Cutright-Smith
SUMMARY The human gluteus maximus is a distinctive muscle in terms of size, anatomy and function compared to apes and other non-human primates. Here we employ electromyographic and kinematic analyses of human subjects to test the hypothesis that the human gluteus maximus plays a more important role in running than walking. The results indicate that the gluteus maximus is mostly quiescent with low levels of activity during level and uphill walking, but increases substantially in activity and alters its timing with respect to speed during running. The major functions of the gluteus maximus during running are to control flexion of the trunk on the stance-side and to decelerate the swing leg; contractions of the stance-side gluteus maximus may also help to control flexion of the hip and to extend the thigh. Evidence for when the gluteus maximus became enlarged in human evolution is equivocal, but the muscles minimal functional role during walking supports the hypothesis that enlargement of the gluteus maximus was likely important in the evolution of hominid running capabilities.
Journal of Human Evolution | 2009
Herman Pontzer; David A. Raichlen; Michael D. Sockol
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.
PLOS ONE | 2010
David A. Raichlen; Adam D. Gordon; William E. H. Harcourt-Smith; Adam D. Foster; Wm. Randall Haas
Background Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease energy costs of bipedalism by 3.6 Ma. Methodology/Principal Findings Using an experimental design, we show that the Laetoli hominins walked with weight transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials matches weight distribution patterns found in the Laetoli footprints. Conclusions These results provide us with the earliest direct evidence of kinematically human-like bipedalism currently known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important selection pressure on hominin bipeds by 3.6 Ma.
The Journal of Experimental Biology | 2012
David A. Raichlen; Adam D. Foster; Gregory L. Gerdeman; Alexandre Seillier; Andrea Giuffrida
SUMMARY Humans report a wide range of neurobiological rewards following moderate and intense aerobic activity, popularly referred to as the ‘runner’s high’, which may function to encourage habitual aerobic exercise. Endocannabinoids (eCBs) are endogenous neurotransmitters that appear to play a major role in generating these rewards by activating cannabinoid receptors in brain reward regions during and after exercise. Other species also regularly engage in endurance exercise (cursorial mammals), and as humans share many morphological traits with these taxa, it is possible that exercise-induced eCB signaling motivates habitual high-intensity locomotor behaviors in cursorial mammals. If true, then neurobiological rewards may explain variation in habitual locomotor activity and performance across mammals. We measured circulating eCBs in humans, dogs (a cursorial mammal) and ferrets (a non-cursorial mammal) before and after treadmill exercise to test the hypothesis that neurobiological rewards are linked to high-intensity exercise in cursorial mammals. We show that humans and dogs share significantly increased exercise-induced eCB signaling following high-intensity endurance running. eCB signaling does not significantly increase following low-intensity walking in these taxa, and eCB signaling does not significantly increase in the non-cursorial ferrets following exercise at any intensity. This study provides the first evidence that inter-specific variation in neurotransmitter signaling may explain differences in locomotor behavior among mammals. Thus, a neurobiological reward for endurance exercise may explain why humans and other cursorial mammals habitually engage in aerobic exercise despite the higher associated energy costs and injury risks, and why non-cursorial mammals avoid such locomotor behaviors.
Journal of Human Evolution | 2011
David A. Raichlen; Hunter Armstrong; Daniel E. Lieberman
The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Herman Pontzer; David A. Raichlen; Robert W. Shumaker; Cara Ocobock; Serge A. Wich
Energy is the fundamental currency of life—needed for growth, repair, and reproduction—but little is known about the metabolic physiology and evolved energy use strategies of the great apes, our closest evolutionary relatives. Here we report daily energy use in free-living orangutans (Pongo spp.) and test whether observed differences in energy expenditure among orangutans, humans, and other mammals reflect known differences in life history. Using the doubly labeled water method, we measured daily energy expenditure (kCal/d) in orangutans living in a large indoor/outdoor habitat at the Great Ape Trust. Despite activity levels similar to orangutans in the wild, Great Ape Trust orangutans used less energy, relative to body mass, than nearly any eutherian mammal ever measured, including sedentary humans. Such an extremely low rate of energy use has not been observed previously in primates, but is consistent with the slow growth and low rate of reproduction in orangutans, and may be an evolutionary response to severe food shortages in their native Southeast Asian rainforests. These results hold important implications for the management of orangutan populations in captivity and in the wild, and underscore the flexibility and interdependence of physiological, behavioral, and life history strategies in the evolution of apes and humans.