Alexandre Tomas
École des Mines de Douai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alexandre Tomas.
Journal of Physical Chemistry A | 2010
Angélique Guilloteau; Yuri Bedjanian; Mai Lan Nguyen; Alexandre Tomas
The kinetics of the thermal desorption of a set of three- to five-ring polycyclic aromatic hydrocarbons (PAHs) from a laboratory-generated kerosene soot surface was studied over the temperature range 250-355 K in a low-pressure flow reactor combined with an electron-impact mass spectrometer. Two methods were used to measure the desorption rate constants: monitoring of the surface-bound PAH decays due to desorption using off-line HPLC measurements of their concentrations in soot samples and monitoring of the desorbed molecules (anthracene and phenanthtrene) in the gas phase using in situ mass spectrometric detection. The Arrhenius parameters (A factors and activation energies) for the desorption rate constants of 10 soot-bound PAHs were determined. The PAH-soot binding energies were found to be similar for PAHs with the same number of carbon atoms and to increase with increasing number of PAH carbon atoms. The experimental data are discussed in the frame of the existing theoretical gas to particle partitioning model.
Journal of Atmospheric Chemistry | 2003
Estelle Turpin; Christa Fittschen; Alexandre Tomas; Pascal Devolder
We have determined the 2-oxo-propyl CH3C(O)CH2 (sometimes called 1-methylvinoxy or acetonyl) radical yield for the reaction of acetone with OH radical relative to the 2-oxo-propyl yields for the reactions of F- and Cl atoms with acetone using the Discharge Flow technique. The 2-oxo-propyl radical has been monitored by Laser Induced Fluorescence LIF at short reaction times in the systems: OH + acetone (R1), F + acetone (R2), and Cl + acetone (R3). From these measurements we have deduced the branching ratio for the 2-oxo-propyl radical formation in the title reaction to be in the range 0.8 ≤ R ≤ 1.
Journal of Physical Chemistry A | 2011
Emese Szabó; Mokhtar Djehiche; Matthieu Riva; Christa Fittschen; Patrice Coddeville; Dariusz Sarzyński; Alexandre Tomas; Sándor Dóbé
The kinetics of the overall reaction between OH radicals and 2,3-pentanedione (1) were studied using both direct and relative kinetic methods at laboratory temperature. The low pressure fast discharge flow experiments coupled with resonance fluorescence detection of OH provided the direct rate coefficient of (2.25 ± 0.44) × 10(-12) cm(3) molecule(-1) s(-1). The relative-rate experiments were carried out both in a collapsible Teflon chamber and a Pyrex reactor in two laboratories using different reference reactions to provide the rate coefficients of 1.95 ± 0.27, 1.95 ± 0.34, and 2.06 ± 0.34, all given in 10(-12) cm(3) molecule(-1) s(-1). The recommended value is the nonweighted average of the four determinations: k(1) (300 K) = (2.09 ± 0.38) × 10(-12) cm(3) molecule(-1) s(-1), given with 2σ accuracy. Absorption cross sections for 2,3-pentanedione were determined: the spectrum is characterized by two wide absorption bands between 220 and 450 nm. Pulsed laser photolysis at 351 nm was used and the depletion of 2,3-pentanedione (2) was measured by GC to determine the photolysis quantum yield of Φ(2) = 0.11 ± 0.02(2σ) at 300 K and 1000 mbar synthetic air. An upper limit was estimated for the effective quantum yield of 2,3-pentanedione applying fluorescent lamps with peak wavelength of 312 nm. Relationships between molecular structure and OH reactivity, as well as the atmospheric fate of 2,3-pentanedione, have been discussed.
Environmental Science & Technology | 2017
Emmanuel Assaf; Leonid Sheps; L. K. Whalley; Dwayne E. Heard; Alexandre Tomas; Coralie Schoemaecker; Christa Fittschen
The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.
Journal of the American Chemical Society | 2014
Mokhtar Djehiche; Ngoc Linh Le Tan; Chaithanya D. Jain; Guillaume Dayma; Philippe Dagaut; Christian Chauveau; Laure Pillier; Alexandre Tomas
For the first time quantitative measurements of the hydroperoxyl radical (HO2) in a jet-stirred reactor were performed thanks to a new experimental setup involving fast sampling and near-infrared cavity ring-down spectroscopy at low pressure. The experiments were performed at atmospheric pressure and over a range of temperatures (550-900 K) with n-butane, the simplest hydrocarbon fuel exhibiting cool flame oxidation chemistry which represents a key process for the auto-ignition in internal combustion engines. The same technique was also used to measure H2O2, H2O, CH2O, and C2H4 under the same conditions. This new setup brings new scientific horizons for characterizing complex reactive systems at elevated temperatures. Measuring HO2 formation from hydrocarbon oxidation is extremely important in determining the propensity of a fuel to follow chain-termination pathways from R + O2 compared to chain branching (leading to OH), helping to constrain and better validate detailed chemical kinetics models.
RSC Advances | 2015
Angappan Mano Priya; Gisèle El Dib; L. Senthilkumar; Chantal Sleiman; Alexandre Tomas; André Canosa; A. Chakir
Absolute experimental and theoretical rate constants are determined for the first time for the reaction of 3-hydroxy-3-methyl-2-butanone (3H3M2B) with OH radicals as a function of temperature. Experimental studies were carried out over the temperature range of 277 to 353 K and the pressure range of 5 to 80 Torr, by using a cryogenically cooled cell coupled to the PLP-LIF technique. OH radicals were generated for the first time from the photodissociation of the reactant 3H3M2B at 266 nm and the OH formation yield in 3H3M2B photolysis at 266 nm was measured under our experimental conditions. In addition, the reaction of 3H3M2B with OH radicals was studied theoretically by using the Density Functional Theory (DFT) method under three hydrogen abstraction pathways. According to these calculations, H-atom abstraction occurs more favourably from the methyl group adjacent to the hydroxyl group with a small barrier height. The calculated theoretical rate constants are in good agreement with the experimental data over the temperature range of 278 to 1000 K. No significant temperature dependence can be observed although a very slight effect was observed within the error bars.
Environmental Science & Technology | 2011
M. Djehiche; Alexandre Tomas; Christa Fittschen; Patrice Coddeville
We report on the development of a new environmental simulation chamber coupled with an in situ continuous wave cavity ring-down spectrometer operating in the near IR (∼1.5 μm). The first application reported in this paper dealt with the chemical mechanism of UV photolysis of methyl nitrite (CH(3)ONO) in air. HONO has been detected for the first time and shown to be formed in the OH + CH(3)ONO reaction. A dense spectrum of cis-HONO absorption lines has been observed near 1.5 μm, in agreement with a previous study (Guilmot et al.). CH(2)O has been measured as primary product with good sensitivity and time resolution. In contrast to Zhao et al., we did not detect any NO(2) absorption features in this wavelength range. Calibration experiments provided very low NO(2) absorption cross sections in this region (∼10(-25) cm(2)), leading to conclude that NO(2) cannot be observed in this wavelength range in the presence of equal amounts of CH(2)O.
Journal of Physical Chemistry A | 2015
Hichem Bouzidi; Mokhtar Djehiche; Tomasz Gierczak; Pranay Morajkar; Christa Fittschen; Patrice Coddeville; Alexandre Tomas
Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)).
Environmental Science & Technology | 2015
Hichem Bouzidi; Lina Aslan; Gisèle El Dib; Patrice Coddeville; Christa Fittschen; Alexandre Tomas
Hydroxyketones are key secondary reaction products in the atmospheric oxidation of volatile organic compounds (VOCs). The fate of these oxygenated VOCs is however poorly understood and scarcely taken into account in atmospheric chemistry modeling. In this work, a combined investigation of the photolysis and temperature-dependent OH radical reaction of 4-hydroxy-2-butanone (4H2B) is presented. The objective was to evaluate the importance of the photolysis process relative to OH oxidation in the atmospheric degradation of 4H2B. A photolysis lifetime of about 26 days was estimated with an effective quantum yield of 0.08. For the first time, the occurrence of a Norrish II mechanism was hypothesized following the observation of acetone among photolysis products. The OH reaction rate coefficient follows the Arrhenius trend (280-358 K) and could be modeled through the following expression: k4H2B(T) = (1.26 ± 0.40) × 10(-12) × exp((398 ± 87)/T) in cm(3) molecule(-1) s(-1). An atmospheric lifetime of 2.4 days regarding the OH + 4H2B reaction was evaluated, indicating that OH oxidation is by far the major degradation channel. The present work underlines the need for further studies on the atmospheric fate of oxygenated VOCs.
Zeitschrift für Physikalische Chemie | 2011
Mokthar Djehiche; Alexandre Tomas; Christa Fittschen; Patrice Coddeville
Abstract The HO2 radical is one of the most important intermediate species in atmospheric chemistry. We report on the development of a new photoreactor with first in-situ measurement of HO2 radical photostationary concentrations using continuous wave cavity ring-down spectrometry (cw-CRDS). Characterization of the actinic photon flux was carried out by NO2 actinometry. Photolysis of Cl2/methanol mixtures in air under UV light allowed the measurement of HO2 photostationary concentrations of a few 1010 molecules cm-3 with an HO2 detection limit of 1.5 × 1010 molecules cm-3 at 6638.207 cm-1. The feasibility of HO2 direct measurement in a reaction chamber is demonstrated through the measurement of the HO2 overall loss at different pressures showing the importance of HO2 diffusion and wall loss in such low pressure quartz reactor. The rate coefficient for the HO2+HO2 reaction has been measured at 6.6, 24 and 118 mbar and found to be in good agreement with the recommended value.