Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandre Zahariev is active.

Publication


Featured researches published by Alexandre Zahariev.


The FASEB Journal | 2011

Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat

Iman Momken; Laurence Stevens; Audrey Bergouignan; Dominique Desplanches; Floriane Rudwill; Alexandre Zahariev; Sandrine Zahn; T. Peter Stein; J. L. Sébédio; Estelle Pujos-Guillot; Maurice Falempin; Chantal Simon; Véronique Coxam; Tany Andrianjafiniony; Guillemette Gauquelin-Koch; Florence Picquet; Stéphane Blanc

Long‐term spaceflight induces hypokinesia and hypodynamia, which, along microgravity per se, result in a number of significant physiological alterations, such as muscle atrophy, force reduction, insulin resistance, substrate use shift from fats to carbohydrates, and bone loss. Each of these adaptations could turn to serious health deterioration during the long‐term spaceflight needed for planetary exploration. We hypothesized that resveratrol (RES), a natural polyphenol, could be used as a nutritional countermeasure to prevent muscle metabolic and bone adaptations to 15 d of rat hindlimb unloading. RES treatment maintained a net protein balance, soleus muscle mass, and soleus muscle maximal force contraction. RES also fully maintained soleus mitochondrial capacity to oxidize palmitoyl‐carnitine and reversed the decrease of the glutathione vs. glutathione disulfide ratio, a biomarker of oxidative stress. At the molecular level, the protein content of Sirt‐1 and COXIV in soleus muscle was also preserved. RES further protected whole‐body insulin sensitivity and lipid trafficking and oxidation, and this was likely associated with the maintained expression of FAT/CD36, CPT‐1, and peroxisome proliferator‐activated receptor‐γ coactivator‐1α (PGC‐1α) in muscle. Finally, chronic RES supplementation maintained the bone mineral density and strength of the femur. For the first time, we report a simple countermeasure that prevents the deleterious adaptations of the major physiological functions affected by mechanical unloading. RES could thus be envisaged as a nutritional counter‐measure for spaceflight but remains to be tested in humans.—Momken, I., Stevens, L., Bergouignan, A., Desplanches, D., Rudwill, F., Chery, I., Zahariev, A., Zahn, S., Stein, T. P., Sebedio, J. L., Pujos‐Guillot, E., Falempin, M., Simon, C., Coxam, V., Andrianjafiniony, T., Gauquelin‐Koch, G., Picquet, F., Blanc, S. Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J. 25, 3646–3660 (2011). www.fasebj.org


The Journal of Clinical Endocrinology and Metabolism | 2010

Regulation of energy balance during long-term physical inactivity induced by bed rest with and without exercise training.

Audrey Bergouignan; Iman Momken; Dale A. Schoeller; Sylvie Normand; Alexandre Zahariev; Bernadette Lescure; Chantal Simon; Stéphane Blanc

BACKGROUND Short-term physical inactivity affects energy balance and is considered conducive to weigh gain. Long-term effects are unknown. OBJECTIVE The objective of the study was to use a bed-rest model to determine the long-term effects of physical inactivity on energy balance regulation and test the effect of exercise training on energy balance adjustment to physical inactivity. DESIGN Sixteen lean women were divided into two groups (n = 8 each): a control group subjected to a strict 60-d bed rest and an exercise group subjected to a combined aerobic/resistive exercise training concomitantly to bed rest. Body composition, spontaneous energy intake, hunger, total energy expenditure (TEE), and fasting gut hormones were measured. RESULTS Based on bed-rest-induced body composition changes, the control group were in slight negative energy balance (-0.4 +/- 0.4 MJ/d; P = 0.01 vs. zero), essentially due to muscle atrophy (P < 0.001 vs. zero). The stable fat mass (P = 0.19 vs. zero), and the matching between spontaneous energy intake and TEE indicated, however, a stable energy balance. Hunger and gut hormones remained unchanged during the bed rest. In the exercise group, TEE was 24% higher than in the control group (P = 0.004). Unexpectedly, desire to consume food (P = 0.025) decreased and spontaneous energy intake (P = NS) was not stimulated, promoting a negative energy balance (-1.1 +/- 0.5 MJ/d, P = 0.0003 vs. zero). CONCLUSIONS Energy balance is regulated during 2 months of physical inactivity, contrasting with short-term experiments. Conversely, exercise-induced energy expenditure in bed-resting subjects who have no spontaneous physical activity did not induce hunger and promoted a negative energy balance, suggesting a potential role of nonexercise physical activities in energy balance regulation.


PLOS ONE | 2010

Total Energy Expenditure and Body Composition in Two Free-Living Sympatric Lemurs

Bruno Simmen; Françoise Bayart; Hanta Rasamimanana; Alexandre Zahariev; Stéphane Blanc; Patrick Pasquet

Background Evolutionary theories that account for the unusual socio-ecological traits and life history features of group-living prosimians, compared with other primates, predict behavioral and physiological mechanisms to conserve energy. Low energy output and possible fattening mechanisms are expected, as either an adaptive response to drastic seasonal fluctuations of food supplies in Madagascar, or persisting traits from previously nocturnal hypometabolic ancestors. Free ranging ring-tailed lemurs (Lemur catta) and brown lemurs (Eulemur sp.) of southern Madagascar have different socio-ecological characteristics which allow a test of these theories: Both gregarious primates have a phytophagous diet but different circadian activity rhythms, degree of arboreality, social systems, and slightly different body size. Methodology and Results Daily total energy expenditure and body composition were measured in the field with the doubly labeled water procedure. High body fat content was observed at the end of the rainy season, which supports the notion that individuals need to attain a sufficient physical condition prior to the long dry season. However, ring-tailed lemurs exhibited lower water flux rates and energy expenditure than brown lemurs after controlling for body mass differences. The difference was interpreted to reflect higher efficiency for coping with seasonally low quality foods and water scarcity. Daily energy expenditure of both species was much less than the field metabolic rates predicted by various scaling relationships found across mammals. Discussion We argue that low energy output in these species is mainly accounted for by low basal metabolic rate and reflects adaptation to harsh, unpredictable environments. The absence of observed sex differences in body weight, fat content, and daily energy expenditure converge with earlier investigations of physical activity levels in ring-tailed lemurs to suggest the absence of a relationship between energy constraints and the evolution of female dominance over males among lemurs. Nevertheless, additional seasonal data are required to provide a definitive conclusion.


The American Journal of Clinical Nutrition | 2013

Activity energy expenditure is a major determinant of dietary fat oxidation and trafficking, but the deleterious effect of detraining is more marked than the beneficial effect of training at current recommendations

Audrey Bergouignan; Iman Momken; Etienne Lefai; Edwina Antoun; Dale A. Schoeller; Carine Platat; Alexandre Zahariev; Hubert Vidal; Laure Gabert; Sylvie Normand; Damien Freyssenet; Martine Laville; Chantal Simon; Stéphane Blanc

BACKGROUND Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. CONCLUSION Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Dietary palmitate and linoleate oxidations, oxidative stress, and DNA damage differ according to season in mouse lemurs exposed to a chronic food deprivation.

Sylvain Giroud; Martine Perret; Caroline Gilbert; Alexandre Zahariev; Joëlle Goudable; Yvon Le Maho; Hugues Oudart; Iman Momken; Fabienne Aujard; Stéphane Blanc

This study investigated the extent to which the increase in torpor expression in the grey mouse lemur, due to graded food restriction, is modulated by a trade-off between a whole body sparing of polyunsaturated dietary fatty acids and the related oxidative stress generated during daily torpor. We measured changes in torpor frequency, total energy expenditure (TEE), linoleate (polyunsaturated fatty acid) and palmitate (saturated fatty acid) oxidation, hexanoyl-lysine (HEL; the product of linoleate peroxidation), and 8-hydroxydeoxyguanosine (8OHdG; a marker of DNA damage). Animals under summer-acclimated long days (LD) or winter-acclimated short days (SD) were exposed to a 40% (LD40 and SD40) and 80% (LD80 and SD80) 35-day calorie restriction (CR). During CR, all groups reduced their body mass, but LD80 animals reached survival-threatened levels at day 22 and were then excluded from the CR trial. Only SD mouse lemurs increased their torpor frequency with CR and displayed a decrease in their TEE adjusted for fat-free mass. After CR, SD40 mouse lemurs shifted the dietary fatty acid oxidation toward palmitate and spared linoleate. Such a shift was not observed in LD animals and during severe CR, during which oxidation of both dietary fatty acids was increased. Concomitantly, HEL increased in both LD40 and SD80 groups, whereas DNA damage was only seen in SD80 food-restricted animals. HEL correlated positively with linoleate oxidation confirming in vivo the substrate/product relationship demonstrated in vitro, and negatively with TEE adjusted for fat-free mass, suggesting higher oxidative stress associated with increased torpor expression. This suggests a seasonal-dependant, cost-benefit trade-off between maximizing torpor propensity and minimizing oxidative stress that is associated with a shift toward sparing of dietary polyunsaturated fatty acids that is dependent upon the expression of a winter phenotype.


PLOS ONE | 2010

The Grey Mouse Lemur Uses Season-Dependent Fat or Protein Sparing Strategies to Face Chronic Food Restriction

Sylvain Giroud; Martine Perret; Peter Stein; Joëlle Goudable; Fabienne Aujard; Caroline Gilbert; Jean Patrice Robin; Yvon Le Maho; Alexandre Zahariev; Stéphane Blanc; Iman Momken

During moderate calorie restriction (CR) the heterotherm Microcebus murinus is able to maintain a stable energy balance whatever the season, even if only wintering animals enter into torpor. To understand its energy saving strategies to respond to food shortages, we assessed protein and energy metabolisms associated with wintering torpor expression or summering torpor avoidance. We investigated body composition, whole body protein turnover, and daily energy expenditure (DEE), during a graded (40 and 80%) 35-day CR in short-days (winter; SD40 and SD80, respectively) and long-days (summer; LD40 and LD80, respectively) acclimated animals. LD40 animals showed no change in fat mass (FM) but a 12% fat free mass (FFM) reduction. Protein balance being positive after CR, the FFM loss was early and rapid. The 25% DEE reduction, in LD40 group was mainly explained by FFM changes. LD80 animals showed a steady body mass loss and were excluded from the CR trial at day 22, reaching a survival-threatened body mass. No data were available for this group. SD40 animals significantly decreased their FM level by 21%, but maintained FFM. Protein sparing was achieved through a 35 and 39% decrease in protein synthesis and catabolism (protein turnover), respectively, overall maintaining nitrogen balance. The 21% reduction in energy requirement was explained by the 30% nitrogen flux drop but also by torpor as DEE FFM-adjusted remained 13% lower compared to ad-libitum. SD80 animals were unable to maintain energy and nitrogen balances, losing both FM and FFM. Thus summering mouse lemurs equilibrate energy balance by a rapid loss of active metabolic mass without using torpor, whereas wintering animals spare protein and energy through increased torpor expression. Both strategies have direct fitness implication: 1) to maintain activities at a lower body size during the mating season and 2) to preserve an optimal wintering muscle mass and function.


PLOS ONE | 2009

Impaired Control of Body Cooling during Heterothermia Represents the Major Energetic Constraint in an Aging Non-Human Primate Exposed to Cold

Jérémy Terrien; Alexandre Zahariev; Stéphane Blanc; Fabienne Aujard

Daily heterothermia is used by small mammals for energy and water savings, and seems to be preferentially exhibited during winter rather than during summer. This feature induces a trade-off between the energy saved during daily heterothermia and the energy cost of arousal, which can impact energy balance and survival under harsh environmental conditions. Especially, aging may significantly affect such trade off during cold-induced energy stress, but direct evidences are still lacking. We hypothesized that aging could alter the energetics of daily heterothermia, and that the effects could differ according to season. In the gray mouse lemur (Microcebus murinus), a non-human primate species which exhibits daily heterothermia, we investigated the effects of exposures to 25 and 12°C on body composition, energy balance, patterns of heterothermia and water turnover in adult (N = 8) and aged animals (N = 7) acclimated to winter-like or summer-like photoperiods. Acclimation to summer prevented animals from deep heterothermia, even during aging. During winter, adult animals at 12°C and aged animals at 25°C exhibited low levels of energy expenditure with minor modulations of heterothermia. The major effects of cold were observed during winter, and were particularly pronounced in aged mouse lemurs which exhibited deep heterothermia phases. Body composition was not significantly affected by age and could not explain the age-related differences in heterothermia patterns. However, aging was associated with increased levels of energy expenditure during cold exposure, in concomitance with impaired energy balance. Interestingly, increased energy expenditure and depth of heterothermia phases were strongly correlated. In conclusion, it appeared that the exhibition of shallow heterothermia allowed energy savings during winter in adult animals only. Aged animals exhibited deep heterothermia and increased levels of energy expenditure, impairing energy balance. Thus, an impaired control of the heterothermic process induced high energy costs in the aging mouse lemur exposed to cold.


eLife | 2018

Implications of being born late in the active season for growth, fattening, torpor use, winter survival and fecundity

Britta Mahlert; Hanno Gerritsmann; Gabrielle L. Stalder; Thomas Ruf; Alexandre Zahariev; Stéphane Blanc; Sylvain Giroud

For hibernators, being born late in the active season may have important effects on growth and fattening, hence on winter survival and reproduction. This study investigated differences in growth, fattening, energetic responses, winter survival and fecundity between early-born (‘EB’) and late-born (‘LB’) juvenile garden dormice (Eliomys quercinus). LB juveniles grew and gained mass twice as fast as EB individuals. Torpor use was low during intensive growth, that are, first weeks of body mass gain, but increased during pre-hibernation fattening. LB juveniles showed higher torpor use, reached similar body sizes but lower fat content than EB individuals before hibernation. Finally, LB individuals showed similar patterns of hibernation, but higher proportion of breeders during the following year than EB dormice. These results suggest that torpor is incompatible with growth but promotes fattening and consolidates pre-hibernation fat depots. In garden dormice, being born late in the reproductive season is associated with a fast life history.


Rapid Communications in Mass Spectrometry | 2015

Analytical aspects of measuring 2H/1H and 18O/16O ratios in urine from doubly labelled water studies by high-temperature conversion elemental analyser-isotope-ratio mass spectrometry

Alexandre Zahariev; Chantal Simon; Stéphane Blanc

RATIONALE Total Body Water (TBW) and Total Energy Expenditure (TEE) are routinely measured in free-living conditions by the (2)H2(18)O method. Isotope eliminations can be measured from spot urine samples by HTC-EA IRMS, but only after cumbersome cryogenic distillation to extract water. Distillation may, however, be replaced by charcoal treatment and filtration. This study tested (1) the effect of sample treatments (filtration versus distillation) on the isotope ratios, (2) the effect of different ways of normalization that respect or not the principle of identical treatment of the sample and references, and (3) the impact on the biological outcomes. METHODS Two filters (PES membrane; 10 kDa) accepting volumes of urine samples (V500: 0.5 mL versus V6: 3.0 mL) were tested. In-house water standards and in-house urine standards were prepared and normalized against the international scale to calibrate the urine samples. The δ(2)H and δ(18)O values from water in the urine were measured by HTC-EA IRMS. RESULTS Filtered urine normalized with water standards showed a bias in the δ(2)H values that was corrected when calibration was performed with urine standards. At a δ(2)H value of 1101.4‰, the accuracy increased from -11.9 to -0.2 δ‰ (V500) and from -3.8 to 0.4 δ‰ (V6). The TBW errors were greatest with V500 and water calibration (1.20%) and lowest with V6 and urine calibration (0.34%; preparation-by-calibration interaction p = 0.027). For the δ(18)O values the accuracy of enrichments and TBW were not affected whatever preparations and normalization were used. The average TEE was not affected but the variability increased from 0.6 to 2.7% versus cryogenic distillation. CONCLUSIONS Cryogenic distillation remains the gold standard for small sample size experiments where small changes in TEE are to be detected. Filtration offers an alternative for large-scale experiments. When the body composition is derived from (2)H2O dilution, it is strongly recommended that urine standards should be used to eliminate the effect of filtration.


Communications Biology | 2018

Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates

Fabien Pifferi; Jérémy Terrien; Julia Marchal; Alexandre Dal-Pan; Fathia Djelti; Isabelle Hardy; Sabine Chahory; Nathalie Cordonnier; L. Desquilbet; Murielle Hurion; Alexandre Zahariev; Philippe Zizzari; Martine Perret; Jacques Epelbaum; Stéphane Blanc; Jean-Luc Picq; Marc Dhenain; Fabienne Aujard

The health benefits of chronic caloric restriction resulting in lifespan extension are well established in many short-lived species, but the effects in humans and other primates remain controversial. Here we report the most advanced survival data and the associated follow-up to our knowledge of age-related alterations in a cohort of grey mouse lemurs (Microcebus murinus, lemurid primate) exposed to a chronic moderate (30%) caloric restriction. Compared to control animals, caloric restriction extended lifespan by 50% (from 6.4 to 9.6 years, median survival), reduced aging-associated diseases and preserved loss of brain white matter in several brain regions. However, caloric restriction accelerated loss of grey matter throughout much of the cerebrum. Cognitive and behavioural performances were, however, not modulated by caloric restriction. Thus chronic moderate caloric restriction can extend lifespan and enhance health of a primate, but it affects brain grey matter integrity without affecting cognitive performances.Fabien Pifferi et al. report survival and age-related brain atrophy data in grey mouse lemurs fed either a normal diet or a diet restricted in calories by 30%. They find that caloric restriction extended life span by 50% and decelerated brain white matter atrophy, but accelerated the loss of grey matter, in most of the cerebrum.

Collaboration


Dive into the Alexandre Zahariev's collaboration.

Top Co-Authors

Avatar

Stéphane Blanc

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Iman Momken

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Chantal Simon

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Etienne Lefai

Institut national des sciences appliquées

View shared research outputs
Top Co-Authors

Avatar

Fabienne Aujard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Audrey Bergouignan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guillemette Gauquelin-Koch

Centre National D'Etudes Spatiales

View shared research outputs
Top Co-Authors

Avatar

Sylvie Normand

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Audrey Bergouignan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martine Perret

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge