Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etienne Lefai is active.

Publication


Featured researches published by Etienne Lefai.


Cell Metabolism | 2011

AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice

Yu Li; Shanqin Xu; Maria M. Mihaylova; Bin Zheng; Xiuyun Hou; Bingbing Jiang; Ogyi Park; Zhijun Luo; Etienne Lefai; John Y.-J. Shyy; Bin Gao; Michel Wierzbicki; Tony J. Verbeuren; Reuben J. Shaw; Richard A. Cohen; Mengwei Zang

AMPK has emerged as a critical mechanism for salutary effects of polyphenols on lipid metabolic disorders in type 1 and type 2 diabetes. Here we demonstrate that AMPK interacts with and directly phosphorylates sterol regulatory element binding proteins (SREBP-1c and -2). Ser372 phosphorylation of SREBP-1c by AMPK is necessary for inhibition of proteolytic processing and transcriptional activity of SREBP-1c in response to polyphenols and metformin. AMPK stimulates Ser372 phosphorylation, suppresses SREBP-1c cleavage and nuclear translocation, and represses SREBP-1c target gene expression in hepatocytes exposed to high glucose, leading to reduced lipogenesis and lipid accumulation. Hepatic activation of AMPK by the synthetic polyphenol S17834 protects against hepatic steatosis, hyperlipidemia, and accelerated atherosclerosis in diet-induced insulin-resistant LDL receptor-deficient mice in part through phosphorylation of SREBP-1c Ser372 and suppression of SREBP-1c- and -2-dependent lipogenesis. AMPK-dependent phosphorylation of SREBP may offer therapeutic strategies to combat insulin resistance, dyslipidemia, and atherosclerosis.


Diabetes | 2009

The microRNA Signature in Response to Insulin Reveals Its Implication in the Transcriptional Action of Insulin in Human Skeletal Muscle and the Role of a Sterol Regulatory Element–Binding Protein-1c/Myocyte Enhancer Factor 2C Pathway

Aurélie Granjon; Marie-Paule Gustin; Jennifer Rieusset; Etienne Lefai; Isabelle Güller; Catherine Cerutti; Christian Paultre; Emmanuel Disse; Rémi Rabasa-Lhoret; Martine Laville; Hubert Vidal; Sophie Rome

OBJECTIVE Factors governing microRNA expressions in response to changes of cellular environment are still largely unknown. Our aim was to determine whether insulin, the major hormone controlling whole-body energy homeostasis, is involved in the regulation of microRNA expressions in human skeletal muscle. RESEARCH DESIGN AND METHODS We carried out comparative microRNA (miRNA) expression profiles in human skeletal muscle biopsies before and after a 3-h euglycemic-hyperinsulinemic clamp, with TaqMan low-density arrays. Then, using DNA microarrays, we determined the response to insulin of the miRNA putative target genes in order to determine their role in the transcriptional action of insulin. We further characterized the mechanism of action of insulin on two representative miRNAs, miR-1 and miR-133a, in human muscle cells. RESULTS Insulin downregulated the expressions of 39 distinct miRNAs in human skeletal muscle. Their potential target mRNAs coded for proteins that were mainly involved in insulin signaling and ubiquitination-mediated proteolysis. Bioinformatic analysis suggested that combinations of different downregulated miRNAs worked in concert to regulate gene expressions in response to insulin. We further demonstrated that sterol regulatory element–binding protein (SREBP)-1c and myocyte enhancer factor 2C were involved in the effect of insulin on miR-1 and miR-133a expression. Interestingly, we found an impaired regulation of miRNAs by insulin in the skeletal muscle of type 2 diabetic patients, likely as consequences of altered SREBP-1c activation. CONCLUSIONS This work demonstrates a new role of insulin in the regulation of miRNAs in human skeletal muscle and suggests a possible implication of these new modulators in insulin resistance.


Biochemical Journal | 2006

Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs

Nicolas Dif; Vanessa Euthine; Estelle Gonnet; M. Laville; Hubert Vidal; Etienne Lefai

In the present study, we aimed to decipher the mechanisms involved in the transcriptional effect of insulin on the SREBP-1c specific promoter of the human srebf-1 gene. Using luciferase reporter gene constructs in HEK-293 cells (human embryonic kidney cells), we demonstrated that the full effect of insulin requires the presence of SREs (sterol response elements) in the proximal region of the promoter. Furthermore, insulin increases the binding of SREBP-1 (sterol-regulatory-element-binding protein-1) to this promoter region in chromatin immunoprecipitation assay. We also found that the nuclear receptors LXRs (liver X receptors) strongly activate SREBP-1c gene expression and identified the LXRE (LXR-response element) involved in this effect. However, our results suggested that these LXREs do not play a major role in the response to insulin. Finally, using expression vectors and adenoviruses allowing ectopic overexpressions of the human mature forms of SREBP-1a or SREBP-1c, we demonstrated the direct role of SREBP-1 in the control of SREBP-1c gene expression in human skeletal-muscle cells. Altogether, these results strongly suggest that the SREBP-1 transcription factors are the main mediators of insulin action on SREBP-1c expression in human tissues.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia

François B. Favier; Frédéric Costes; Aurélia Defour; Régis Bonnefoy; Etienne Lefai; Stéphane Baugé; Andre Peinnequin; Henri Benoit; Damien Freyssenet

Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.


Journal of Biological Chemistry | 2006

BRCA1 Affects Lipid Synthesis through Its Interaction with Acetyl-CoA Carboxylase

Karen Moreau; Eva Dizin; Hind Ray; Céline Luquain; Etienne Lefai; Fabienne Foufelle; Marc Billaud; Gilbert M. Lenoir; Nicole Dalla Venezia

Germ line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood. We have recently demonstrated that BRCA1 interacts in vivo with acetyl coenzyme A carboxylase α (ACCA) through its tandem of BRCA1 C terminus (BRCT) domains. To understand the biological function of the BRCA1·ACCA complex, we sought to determine whether BRCA1 is a regulator of lipogenesis through its interaction with ACCA. We showed here that RNA inhibition-mediated down-regulation of BRCA1 expression induced a marked increase in the fatty acid synthesis. We then delineated the biochemical characteristics of the complex and found that BRCA1 interacts solely with the phosphorylated and inactive form of ACCA (P-ACCA). Finally, we demonstrated that BRCA1 affects lipid synthesis by preventing P-ACCA dephosphorylation. These results suggest that BRCA1 affects lipogenesis through binding to P-ACCA, providing a new mechanism by which BRCA1 may exert a tumor suppressor function.


Diabetes | 2011

FTO Is Increased in Muscle During Type 2 Diabetes, and Its Overexpression in Myotubes Alters Insulin Signaling, Enhances Lipogenesis and ROS Production, and Induces Mitochondrial Dysfunction

Amélie Bravard; Etienne Lefai; Sandra Pesenti; Emmanuel Disse; Julien Vouillarmet; Noël Peretti; Rémi Rabasa-Lhoret; Martine Laville; Hubert Vidal; Jennifer Rieusset

OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments. RESULTS We found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes. CONCLUSIONS This study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes.


Cell Cycle | 2014

Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation

Alexis Forterre; Audrey Jalabert; Karim Chikh; Sandra Pesenti; Vanessa Euthine; Aurélie Granjon; Elizabeth Errazuriz; Etienne Lefai; Hubert Vidal; Sophie Rome

It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.


Journal of Applied Physiology | 2012

Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men.

Clément Villars; Audrey Bergouignan; Julien Dugas; E. Antoun; Dale A. Schoeller; H. Roth; A. C. Maingon; Etienne Lefai; Stéphane Blanc; Chantal Simon

Combining accelerometry (ACC) with heart rate (HR) monitoring is thought to improve activity energy expenditure (AEE) estimations compared with ACC alone to evaluate the validity of ACC and HR used alone or combined. The purpose of this study was to estimate AEE in free-living conditions compared with doubly labeled water (DLW). Ten-day free-living AEE was measured by a DLW protocol in 35 18- to 55-yr-old men (11 lean active; 12 lean sedentary; 12 overweight sedentary) wearing an Actiheart (combining ACC and HR) and a RT3 accelerometer. AEE was estimated using group or individual calibration of the HR/AEE relationship, based on an exercise-tolerance test. In a subset (n = 21), AEE changes (ΔAEE) were measured after 1 mo of detraining (active subjects) or an 8-wk training (sedentary subjects). Actiheart-combined ACC/HR estimates were more accurate than estimates from HR or ACC alone. Accuracy of the Actiheart group-calibrated ACC/HR estimates was modest [intraclass correlation coefficient (ICC) = 0.62], with no bias but high root mean square error (RMSE) and limits of agreement (LOA). The mean bias of the estimates was reduced by one-third, like RMSE and LOA, by individual calibration (ICC = 0.81). Contrasting with group-calibrated estimates, the Actiheart individual-calibrated ACC/HR estimates explained 40% of the variance of the DLW-ΔAEE (ICC = 0.63). This study supports a good level of agreement between the Actiheart ACC/HR estimates and DLW-measured AEE in lean and overweight men with varying fitness levels. Individual calibration of the HR/AEE relationship is necessary for AEE estimations at an individual level rather than at group scale and for ΔAEE evaluation.


Diabetologia | 2006

Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells.

D. Cozzone; Cyrille Debard; N. Dif; Nadège Ricard; E. Disse; Julien Vouillarmet; R. Rabasa-Lhoret; M. Laville; D. Pruneau; Jennifer Rieusset; Etienne Lefai; Hubert Vidal

Aims/hypothesisThe aim of this study was to investigate the effects of liver X receptor (LXR) activation on lipid metabolism and insulin action in human skeletal muscle cells prepared from control subjects and from patients with type 2 diabetes.Subjects and methodsCultured myotubes were obtained from muscle biopsies of 11 lean, healthy control subjects and ten patients with type 2 diabetes. The mRNA levels of LXR isoforms and lipogenic genes were estimated by RT-quantitative PCR, and the effects of LXR agonists on insulin action were evaluated by assays of protein kinase B serine 473 phosphorylation and glycogen synthesis.ResultsBoth LXRα and LXRβ were expressed in human skeletal muscle and adipose tissue and there was no difference in their mRNA abundance in tissues from patients with type 2 diabetes compared with control subjects. In cultured muscle cells, LXR activation by T0901317 strongly increased expression of the genes encoding lipogenic enzymes, including sterol regulatory element binding protein 1c, fatty acid synthase and stearoyl-CoA desaturase 1, and also promoted triglyceride accumulation in the presence of a high glucose concentration. Importantly, these effects on lipid metabolism did not affect protein kinase B activation by insulin. Furthermore, LXR agonists did not modify insulin action in muscle cells from patients with type 2 diabetes.Conclusions/interpretationThese data suggest that LXR agonists may lead to increased utilisation of lipids and glucose in muscle cells without affecting the mechanism of action of insulin. However, the long-term consequences of triglyceride accumulation in muscle should be evaluated before the development of effective LXR-based therapeutic agents.


Nature Medicine | 2013

A liver Hif-2α-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition

Kevin Wei; Stephanie M. Piecewicz; Lisa M McGinnis; Cullen M. Taniguchi; Stanley J. Wiegand; Keith D. Anderson; Carol W.M. Chan; Kimberly X. Mulligan; David Kuo; Jenny Yuan; Mario Vallon; Lori C. Morton; Etienne Lefai; M. Celeste Simon; Jacquelyn J. Maher; Gilles Mithieux; Fabienne Rajas; Justin P. Annes; Owen P. McGuinness; Gavin Thurston; Amato J. Giaccia; Calvin J. Kuo

Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α−mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.

Collaboration


Dive into the Etienne Lefai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Bergouignan

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Chantal Simon

Claude Bernard University Lyon 1

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphane Blanc

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georges Némoz

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge