Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexandru Andrei is active.

Publication


Featured researches published by Alexandru Andrei.


international solid-state circuits conference | 2013

An implantable 455-active-electrode 52-channel CMOS neural probe

Carolina Mora Lopez; Alexandru Andrei; Srinjoy Mitra; Marleen Welkenhuysen; Wolfgang Eberle; Carmen Bartic; Robert Puers; Refet Firat Yazicioglu; Georges Gielen

Several studies have demonstrated that understanding certain brain functions can only be achieved by simultaneously monitoring the electrical activity of many individual neurons in multiple brain areas [1]. Therefore, the main tradeoff in neural probe design is between minimizing the probe dimensions and achieving high spatial resolution using large arrays of small recording sites. Current state-of-the-art solutions are limited in the amount of simultaneous readout channels [2], contain a small number of electrodes [2,3] or use hybrid implementations to increase the number of readout channels [3,4].


Nature | 2017

Fully integrated silicon probes for high-density recording of neural activity

James J. Jun; Nicholas A. Steinmetz; Joshua H. Siegle; Daniel J. Denman; Marius Bauza; Brian Barbarits; Albert K. Lee; Costas A. Anastassiou; Alexandru Andrei; Çağatay Aydın; Mladen Barbic; Timothy J. Blanche; Vincent Bonin; João Couto; Barundeb Dutta; Sergey L. Gratiy; Diego A. Gutnisky; Michael Häusser; Bill Karsh; Peter Ledochowitsch; Carolina Mora Lopez; Catalin Mitelut; Silke Musa; Michael Okun; Marius Pachitariu; Jan Putzeys; P. Dylan Rich; Cyrille Rossant; Wei-lung Sun; Karel Svoboda

Sensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca2+ imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials. Until now, no technology compatible with use in unrestrained animals has combined high spatiotemporal resolution with large volume coverage. Here we design, fabricate and test a new silicon probe known as Neuropixels to meet this need. Each probe has 384 recording channels that can programmably address 960 complementary metal–oxide–semiconductor (CMOS) processing-compatible low-impedance TiN sites that tile a single 10-mm long, 70 × 20-μm cross-section shank. The 6 × 9-mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed and digitized on the base, allowing the direct transmission of noise-free digital data from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were recorded simultaneously from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed large populations of neurons from several brain structures to be recorded in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens a path towards recording of brain-wide neural activity during behaviour.


IEEE Transactions on Biomedical Engineering | 2011

Effect of Insertion Speed on Tissue Response and Insertion Mechanics of a Chronically Implanted Silicon-Based Neural Probe

Marleen Welkenhuysen; Alexandru Andrei; L. Ameye; Wolfgang Eberle; Bart Nuttin

In this study, the effect of insertion speed on long-term tissue response and insertion mechanics was investigated. A dummy silicon parylene-coated probe was used in this context and implanted in the rat brain at 10 μm/s (n = 6) or 100 μm/s ( n = 6) to a depth of 9 mm. The insertion mechanics were assessed by the dimpling distance, and the force at the point of penetration, at the end of the insertion phase, and after a 3-min rest period in the brain. After 6 weeks, the tissue response was evaluated by estimating the amount of gliosis, inflammation, and neuronal cell loss with immunohistochemistry. No difference in dimpling, penetration force, or the force after a 3-min rest period in the brain was observed. However, the force at the end of the insertion phase was significantly higher when inserting the probes at 100 μm/s compared to 10 μm/s. Furthermore, an expected tissue response was seen with an increase of glial and microglial reactivity around the probe. This reaction was similar along the entire length of the probe. However, evidence for a neuronal kill zone was observed only in the most superficial part of the implant. In this region, the lesion size was also greatest. Comparison of the tissue response between insertion speeds showed no differences.


Journal of Neural Engineering | 2012

A response surface model predicting the in vivo insertion behavior of micromachined neural implants

Alexandru Andrei; Marleen Welkenhuysen; Bart Nuttin; Wolfgang Eberle

The mechanical damage caused by the insertion of a foreign body into living tissue is inevitable, especially when a considerable stiffness mismatch is present, as in the case of micromachined neural implants and brain tissue. However, the response surface model based on a central composite experimental design described in this study showed that for particular configurations of the implant tip angle, width, thickness or insertion speed, some of these factors could be safely increased without causing an unwanted significant force or tissue dimpling increase. The model covers chisel tip angles between 10° and 50°, implant widths within the 200-400 µm range and thicknesses between 50 and 150 µm. The insertion speed has been varied from 10 up to 100 µm s(-1) to reach a final insertion depth of 6 mm. Coating the implant with parylene C proved to be beneficial in reducing the friction between the implant and the surrounding tissue. Successfully validated for a particular implant geometry, this model could be used as an insertion behavior prediction tool for the design optimization of future neural implants.


Journal of Neurophysiology | 2016

Validating silicon polytrodes with paired juxtacellular recordings: method and dataset

Joana P. Neto; Gonçalo Lopes; Jo atildeo Frazão; Joana Nogueira; Pedro Lacerda; Pedro Baião; Arno Aarts; Alexandru Andrei; Silke Musa; Elvira Fortunato; Pedro Barquinha; Adam R. Kampff

Recording in vivo from the same neuron with two different methods is difficult. It requires blindly moving each probe to within ∼100 μm of one another and for this reason such “dual-recordings” are rare. However, comparing the signals measured by different techniques is necessary to understand what they measure. We developed a method to precisely align the axes of two manipulators and used it to gather a “ground truth” dataset for dense extracellular polytrodes.


Sensors | 2017

Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites

Bogdan Raducanu; Refet Firat Yazicioglu; Carolina Mora Lopez; Marco Ballini; Jan Putzeys; Shiwei Wang; Alexandru Andrei; Véronique Rochus; Marleen Welkenhuysen; Nick Van Helleputte; Silke Musa; Robert Puers; Fabian Kloosterman; Chris Van Hoof; Richárd Fiáth; István Ulbert; Srinjoy Mitra

We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications. For enhanced performance, further noise reduction can be achieved while using half of the electrodes (678). Both of these numbers considerably surpass the state-of-the art active neural probes in both electrode count and number of recording channels. The measured input referred noise in the action potential band is 12.4 µVrms, while using 678 electrodes, with just 3 µW power dissipation per pixel and 45 µW per read-out channel (including data transmission).


european solid state device research conference | 2016

Time multiplexed active neural probe with 678 parallel recording sites

Bogdan Raducanu; Refet Firat Yazicioglu; Carolina Mora Lopez; Marco Ballini; Jan Putzeys; Shiwei Wang; Alexandru Andrei; Marleen Welkenhuysen; Nick Van Helleputte; Silke Musa; Robert Puers; Fabian Kloosterman; Chris Van Hoof; Srinjoy Mitra

We present a high density CMOS neural probe with active electrodes (pixels), consisting of dedicated in-situ circuits for signal source amplification. The complete probe contains 1356 neuron sized (20×20 μm2) pixels densely packed on a 50 μm thick, 100 μm wide and 8 mm long shank. It allows simultaneous high-performance recording from 678 electrodes and a possibility to simultaneously observe all of the 1356 electrodes with increased noise. This considerably surpasses the state of the art active neural probes in electrode count and flexibility. The measured action potential band noise is 12.4 μVrms, with just 3 μW power dissipation per electrode amplifier and 45 μW per channel (including data transmission).


international conference of the ieee engineering in medicine and biology society | 2011

Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model

Alexandru Andrei; Marleen Welkenhuysen; L. Ameye; Bart Nuttin; Wolfgang Eberle

Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.


Biosensors and Bioelectronics | 2018

A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings

Richárd Fiáth; Bogdan Raducanu; Silke Musa; Alexandru Andrei; Carolina Mora Lopez; Chris Van Hoof; Patrick Ruther; Arno Aarts; Domonkos Horváth; István Ulbert

In this study, we developed and validated a single-shank silicon-based neural probe with 128 closely-packed microelectrodes suitable for high-resolution extracellular recordings. The 8-mm-long, 100-µm-wide and 50-µm-thick implantable shank of the probe fabricated using a 0.13-µm complementary metal-oxide-semiconductor (CMOS) metallization technology contains square-shaped (20 × 20 µm2), low-impedance (~ 50 kΩ at 1 kHz) recording sites made of rough and porous titanium nitride which are arranged in a 32 × 4 dense array with an inter-electrode pitch of 22.5 µm. The electrophysiological performance of the probe was tested in in vivo experiments by implanting it acutely into neocortical areas of anesthetized animals (rats, mice and cats). We recorded local field potentials, single- and multi-unit activity with superior quality from all layers of the neocortex of the three animal models, even after reusing the probe in multiple (> 10) experiments. The low-impedance electrodes monitored spiking activity with high signal-to-noise ratio; the peak-to-peak amplitude of extracellularly recorded action potentials of well-separable neurons ranged from 0.1 mV up to 1.1 mV. The high spatial sampling of neuronal activity made it possible to detect action potentials of the same neuron on multiple, adjacent recording sites, allowing a more reliable single unit isolation and the investigation of the spatiotemporal dynamics of extracellular action potential waveforms in greater detail. Moreover, the probe was developed with the specific goal to use it as a tool for the validation of electrophysiological data recorded with high-channel-count, high-density neural probes comprising integrated CMOS circuitry.


Journal of Neuroscience Methods | 2018

Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes

Richárd Fiáth; Bogdan Raducanu; Silke Musa; Alexandru Andrei; Carolina Mora Lopez; Marleen Welkenhuysen; Patrick Ruther; Arno Aarts; István Ulbert

BACKGROUND The cortical slow (∼1 Hz) oscillation (SO), which is thought to play an active role in the consolidation of memories, is a brain rhythm characteristic of slow-wave sleep, with alternating periods of neuronal activity and silence. Although the laminar distribution of cortical activity during SO is well-studied by using linear neural probes, traditional devices have a relatively low (20-100 μm) spatial resolution along cortical layers. NEW METHOD In this work, we demonstrate a high-density linear silicon probe fabricated to record the SO with very high spatial resolution (∼6 μm), simultaneously from multiple cortical layers. Ketamine/xylazine-induced SO was acquired acutely from the neocortex of rats, followed by the examination of the high-resolution laminar structure of cortical activity. RESULTS The probe provided high-quality extracellular recordings, and the obtained cortical laminar profiles of the SO were in good agreement with the literature data. Furthermore, we could record the simultaneous activity of 30-50 cortical single units. Spiking activity of these neurons showed layer-specific differences. COMPARISON WITH EXISTING METHODS The developed silicon probe measures neuronal activity with at least a three-fold higher spatial resolution compared with traditional linear probes. By exploiting this feature, we could determine the site of up-state initiation with a higher precision than before. Additionally, increased spatial resolution may provide more reliable spike sorting results, as well as a higher single unit yield. CONCLUSIONS The high spatial resolution provided by the electrodes allows to examine the fine structure of local population activity during sleep SO in greater detail.

Collaboration


Dive into the Alexandru Andrei's collaboration.

Top Co-Authors

Avatar

Marleen Welkenhuysen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Eberle

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Silke Musa

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Carolina Mora Lopez

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Nuttin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Refet Firat Yazicioglu

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Srinjoy Mitra

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Chris Van Hoof

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge