Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei Kondratyev is active.

Publication


Featured researches published by Alexei Kondratyev.


Molecular Brain Research | 2000

Intracerebral injection of caspase-3 inhibitor prevents neuronal apoptosis after kainic acid-evoked status epilepticus

Alexei Kondratyev; Karen Gale

In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. Recent studies have implicated apoptotic processes in this seizure-related injury. Because activation of caspase-3-like cysteine proteases plays a crucial role in mammalian neuronal apoptosis, we explored the possibility that activation of caspase-3 is involved in the neuronal apoptotic cell death that occurs in rat brain following SE induced by systemic kainic acid. Caspase-3 activity was determined immunocytochemically using CM1 antibodies specific for catalytically active subunit (p17) of the enzyme. We found an induction of caspase-3 activity in rhinal cortex and amygdala at 24 h after SE. To determine whether activation of caspase-3-like proteases is a necessary component of the injury process, we delivered a caspase-3 inhibitor, z-DEVD-fmk, into the lateral ventricle prior to, and following SE. z-DEVD-fmk treatment substantially attenuated apoptotic cell death after SE, both in hippocampus and rhinal cortex, as evaluated by analysis of internucleosomal DNA fragmentation and neuronal nuclear morphology. Our findings implicate caspase-3 cysteine protease in the neurodegenerative response to SE and suggest that this degeneration can be attenuated by inhibition of caspase-3-like enzyme activity.


Journal of Pharmacology and Experimental Therapeutics | 2007

Antiepileptic Drug-Induced Neuronal Cell Death in the Immature Brain: Effects of Carbamazepine, Topiramate, and Levetiracetam as Monotherapy versus Polytherapy

Jinsook Kim; Alexei Kondratyev; Karen Gale

The aim of this study was to test the potential neurotoxicity of three antiepileptic drugs (AEDs), carbamazepine (5H-dibenzepine-5-carboxamide), topiramate [2,3:4,5-bis-O-(1-methylethylidene)-β-d-fructopyranose sulfamate], and levetiracetam [2-(2-oxopyrrolidin-1-yl)butanamide], in the developing rat brain, when given alone or in combinations. The extent of cell death induced by AEDs was measured in several brain regions of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay 24 h after drug treatment. Carbamazepine alone did not increase neurodegeneration when given in doses up to 50 mg/kg, but it induced significant cell death at 100 mg/kg. When combined with phenytoin, carbamazepine, 50 but not 25 mg/kg, significantly exacerbated phenytoin-induced cell death. Although topiramate (20–80 mg/kg) alone caused no neurodegeneration, all doses exacerbated phenytoin-induced neurodegeneration. Levetiracetam (250–1000 mg/kg) alone did not induce cell death, nor did it exacerbate phenytoin-induced neurodegeneration. Of the combinations examined, only that of levetiracetam (250 mg/kg) with carbamazepine (50 mg/kg) did not induce neurodegeneration. Our data underscore the importance of evaluating the safety of combinations of AEDs given during development and not merely extrapolating from the effects of exposure to single drugs. Although carbamazepine and topiramate alone did not induce neuronal death, both drugs exacerbated phenytoin-induced cell death. In contrast, because cotreatment with levetiracetam and carbamazepine did not enhance cell death in the developing brain, it may be possible to avoid proapoptotic effects, even in polytherapy, by choosing appropriate drugs. The latter drugs, as monotherapy or in combination, may be promising candidates for the treatment of women during pregnancy and for preterm and neonatal infants.


Epilepsia | 2007

Neurodevelopmental Impact of Antiepileptic Drugs and Seizures in the Immature Brain

Jinsook Kim; Alexei Kondratyev; York Tomita; Karen Gale

Summary:  Seizure incidence during the neonatal period is higher than any other period in the lifespan, yet we know little about this period in terms of the effect of seizures or of the drugs used in their treatment. The fact that several antiepileptic drugs (AEDs) induce pronounced apoptotic neuronal death in specific regions of the immature brain prompts a search for AEDs that may be devoid of this action. Furthermore, there is a clear need to find out if a history of seizures alters the proapoptotic action of the AEDs. Our studies are aimed at both of these issues. Phenytoin, valproate, phenobarbital, and MK801 each induced substantial regionally specific cell death, whereas levetiracetam even in high doses (up to 1,500 mg/kg) did not have this action. In view of our previously findings of neuroprotective actions of repeated seizures in the adult brain, we also examined repeated seizures for a possible antiapoptotic action in the infant rat. Rat pups were preexposed to electroshock seizures (ECS) for 3 days (age 5–7 days) before receiving MK801 on day 7. The effect of ECS, which was consistently a 30% decrease in MK801‐induced programmed cell death (PCD), suggests that repeated seizures can exert an antiapoptotic action in the infant brain. In contrast, PCD induced by valproate was not attenuated by ECS preexposure, suggesting that valproate‐induced PCD is mechanistically distinct from that induced by MK801 and may not be activity‐dependent. Presently, we do not know if this neuroprotective effect of seizures is deleterious or beneficial. If the seizures also enhance the survival of neurons that are destined to undergo naturally occurring PCD, early childhood seizures may have deleterious effects by preventing this necessary component of normal development. While this effect of seizures might be counteracted by AEDs, the fact that several AEDs shift the PCD to the other extreme, and trigger excessive neuronal cell loss, raises concern about whether the drug therapy may be more detrimental than the seizures. In this context, it is encouraging that we have identified at least one AED that is devoid of a proapoptotic action in the infant brain, even in high doses. It is now important to evaluate the long‐term consequences of the changes in PCD in infancy by examining behavioral outcomes and seizure susceptibility in the AED‐ and seizure‐exposed neonates when they reach adulthood.


Journal of Pharmacology and Experimental Therapeutics | 2007

Effects of Lamotrigine Alone and in Combination with MK-801, Phenobarbital, or Phenytoin on Cell Death in the Neonatal Rat Brain

Irina Katz; Jinsook Kim; Karen Gale; Alexei Kondratyev

The neonatal rat brain is vulnerable to neuronal apoptosis induced by antiepileptic drugs (AEDs), especially when given in combination. This study evaluated lamotrigine alone or in combination with phenobarbital, phenytoin, or the glutamate antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) for a proapoptotic action in the developing rat brain. Cell death was assessed in brain regions (striatum, thalamus, and cortical areas) of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, 24 h after acute drug treatment. Lamotrigine alone did not increase neuronal apoptosis when given in doses up to 50 mg/kg; a significant increase in cell death occurred after 100 mg/kg. Combination of 20 mg/kg lamotrigine with 0.5 mg/kg MK-801 or 75 mg/kg phenobarbital resulted in a significant increase in TUNEL-positive cells, compared with MK-801 or phenobarbital treatment alone. A similar enhancement of phenytoin-induced cell death occurred after 30 mg/kg lamotrigine. In contrast, 20 mg/kg lamotrigine significantly attenuated phenytoin-induced cell death. Lamotrigine at 10 mg/kg was without effect on apoptosis induced by phenytoin. Although the functional and clinical implications of AED-induced developmental neuronal apoptosis remain to be elucidated, our finding that lamotrigine alone is devoid of this effect makes this drug attractive as monotherapy for the treatment of women during pregnancy, and for preterm or neonatal infants. However, because AEDs are often introduced as add-on medication, careful selection of drug combinations and doses may be required to avoid developmental neurotoxicity when lamotrigine is used in polytherapy.


Journal of Pharmacology and Experimental Therapeutics | 2012

Effects of neonatal antiepileptic drug exposure on cognitive, emotional, and motor function in adult rats.

Patrick A. Forcelli; Ryan Kozlowski; Charles Snyder; Alexei Kondratyev; Karen Gale

Despite the potent proapoptotic effect of several antiepileptic drugs (AEDs) in developmental rodent models, little is known about the long-term impact of exposure during brain development. Clinically, this is of growing concern. To determine the behavioral consequences of such exposure, we examined phenobarbital, phenytoin, and lamotrigine for their effects on adult behaviors after administration to neonatal rats throughout the second postnatal week. AED treatment from postnatal days 7 to 13 resulted in adult deficits in spatial learning in the Morris water maze and decreased social exploration for all drugs tested. Phenobarbital exposure led to deficits in cued fear conditioning, risk assessment in the elevated plus maze, and sensorimotor gating as measured by prepulse inhibition, but it did not affect motor coordination on the rotorod task. In contrast, phenytoin and lamotrigine exposure led to impaired rotorod performance, but no deficits in sensorimotor gating. Phenytoin, but not lamotrigine or phenobarbital, increased exploration in the open field. Phenytoin and phenobarbital, but not lamotrigine, disrupted cued fear conditioning. These results indicate that AED administration during a limited sensitive postnatal period is sufficient to cause a range of behavioral deficits later in life, and the specific profile of behavioral deficits varies across drugs. The differences in the long-term outcomes associated with the three AEDs examined are not predicted by either the mechanism of AED action or the proapoptotic effect of the drugs. Our findings suggest that a history of AED therapy during development must be considered as a variable when assessing later-life cognitive and psychiatric outcomes.


European Journal of Neuroscience | 2006

Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation

Samantha L. Crowe; Vilen A. Movsesyan; Timothy J. Jorgensen; Alexei Kondratyev

Excessive activation of ionotropic glutamate receptors increases oxidative stress, contributing to the neuronal death observed following neurological insults such as ischemia and seizures. Post‐translational histone modifications may be key mediators in the detection and repair of damage resulting from oxidative stress, including DNA damage, and may thus affect neuronal survival in the aftermath of insults characterized by excessive glutamate release. In non‐neuronal cells, phosphorylation of histone variant H2A.X (termed γ‐H2AX) occurs rapidly following DNA double‐strand breaks. We investigated γ‐H2AX formation in rat cortical neurons (days in vitro 14) following activation of N‐methyl‐d‐aspartate (NMDA) or α‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)/kainate glutamate receptors using fluorescent immunohistochemical techniques. Moreover, we evaluated the co‐localization of γ‐H2AX ‘foci’ with Mre11, a double‐strand break repair protein, to provide further evidence for the activation of this DNA damage response pathway. Here we show that minimally cytotoxic stimulation of ionotropic glutamate receptors was sufficient to evoke γ‐H2AX in neurons, and that NMDA‐induced γ‐H2AX foci formation was attenuated by pretreatment with the antioxidant, Vitamin E, and the intracellular calcium chelator, BAPTA‐AM. Moreover, a subset of γ‐H2AX foci co‐localized with Mre11, indicating that at least a portion of γ‐H2AX foci is damage dependent. The extent of γ‐H2AX induction following glutamate receptor activation corresponded to the increases we observed following conventional DNA damaging agents [i.e. non‐lethal doses of gamma‐radiation (1 Gy) and hydrogen peroxide (10 µm)]. These data suggest that insults not necessarily resulting in neuronal death induce the DNA damage‐evoked chromatin modification, γ‐H2AX, and implicate a role for histone alterations in determining neuronal vulnerability following neurological insults.


Neuroscience | 2002

Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures

R.P Gwinn; Alexei Kondratyev; Karen Gale

Brief experimentally induced seizures have been shown to increase the expression of mRNA encoding basic fibroblast growth factor (FGF-2) in specific brain regions. However, the extent to which this change in mRNA affects the expression of FGF-2 protein in these brain regions has not been examined. In the present study, we exposed rats to brief non-injurious seizures to determine whether this treatment would lead to an increase in FGF-2 protein expression in selected brain regions. Because initial results indicated that the elevation of FGF-2 protein was not significant following acute seizure exposure, we examined both acute and chronic seizure treatment to determine whether FGF-2 protein expression could be increased under conditions of repeated seizures. Brief limbic seizures were induced by minimal electroconvulsive shock (ECS) given as daily treatments for 1 (acute) or 7 (chronic) days. FGF-2 protein was measured in hippocampus, rhinal cortex, frontal cortex, and olfactory bulb at 20, 48, and 72 h following the last seizure. No significant increases in FGF-2 protein were observed in any region following acute ECS. In the chronic ECS-treated groups, significantly elevated FGF-2-like immunoreactivity was found in the frontal and rhinal cortex as compared with the same regions from both control and acute ECS animals. Increases after chronic ECS were maximal at 20 h, and remained significantly elevated as long as 72 h. These increases were predominantly observed for the 24-kDa and 22/22.5-kDa FGF-2 isoforms. Because chronic ECS, which has been shown to be protective against neuronal cell death, induced significantly more FGF-2 immunoreactivity than did acute ECS, we suggest that FGF-2 expression may be an important substrate for the neuroprotective action of non-injurious seizures. A prolonged induction of the high molecular weight isoforms of FGF-2, as occurs after chronic ECS, may selectively reduce the vulnerability of certain brain regions to a variety of neurodegenerative insults.


Epilepsia | 2011

Pattern of antiepileptic drug–induced cell death in limbic regions of the neonatal rat brain

Patrick A. Forcelli; Jinsook Kim; Alexei Kondratyev; Karen Gale

The induction of neuronal apoptosis throughout many regions of the developing rat brain by phenobarbital and phenytoin, two drugs commonly used for the treatment of neonatal seizures, has been well documented. However, several limbic regions have not been included in previous analyses. Because drug‐induced damage to limbic brain regions in infancy could contribute to emotional and psychiatric sequelae, it is critical to determine the extent to which these regions are vulnerable to developmental neurotoxicity. To evaluate the impact of antiepileptic drug (AED) exposure on limbic nuclei, we treated postnatal day 7 rat pups with phenobarbital, phenytoin, carbamazepine, or vehicle, and examined nucleus accumbens, septum, amygdala, piriform cortex, and frontal cortex for cell death. Histologic sections were processed using the terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assay to label apoptotic cells. Nucleus accumbens displayed the highest level of baseline cell death (vehicle group), as well as the greatest net increase in cell death following phenobarbital or phenytoin. Phenobarbital exposure resulted in a significant increase in cell death in all brain regions, whereas phenytoin exposure increased cell death only in the nucleus accumbens. Carbamazepine was without effect on cell death in any brain region analyzed, suggesting that the neurotoxicity observed is not an inherent feature of AED action. Our findings demonstrate pronounced cell death in several important regions of the rat limbic system following neonatal administration of phenobarbital, the first‐line treatment for neonatal seizures in humans. These findings raise the possibility that AED exposure in infancy may contribute to adverse neuropsychiatric outcomes later in life.


Nucleic Acids Research | 2012

Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity.

Jennifer S. Dickey; Brandon J. Baird; Christophe E. Redon; Valeriya Avdoshina; Guillermo Palchik; Junfang Wu; Alexei Kondratyev; William M. Bonner; Olga A. Martin

Direct cellular DNA damage may lead to genome destabilization in unexposed, bystander, cells sharing the same milieu with directly damaged cells by means of the bystander effect. One proposed mechanism involves double strand break (DSB) formation in S phase cells at sites of single strand lesions in the DNA of replication complexes, which has a more open structure compared with neighboring DNA. The DNA in transcription complexes also has a more open structure, and hence may be susceptible to bystander DSB formation from single strand lesions. To examine whether transcription predisposes non-replicating cells to bystander effect-induced DNA DSBs, we examined two types of primary cells that exhibit high levels of transcription in the absence of replication, rat neurons and human lymphocytes. We found that non-replicating bystander cells with high transcription rates exhibited substantial levels of DNA DSBs, as monitored by γ-H2AX foci formation. Additionally, as reported in proliferating cells, TGF-β and NO were found to mimic bystander effects in cell populations lacking DNA synthesis. These results indicate that cell vulnerability to bystander DSB damage may result from transcription as well as replication. The findings offer insights into which tissues may be vulnerable to bystander genomic destabilization in vivo.


Neuroscience | 2002

The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions.

Alexei Kondratyev; R Ved; Karen Gale

Chronic, but not acute, exposure to minimal electroconvulsive shock (ECS) has been shown to decrease vulnerability to neuronal cell death, without itself causing neuronal damage. One potential mechanism for the neuroprotective effect of ECS is the increase in fibroblast growth factor-2 (FGF-2) which occurs after chronic, but not acute, ECS exposure. This raises the possibility that repeated seizures over a period of several days may alter the transcriptional regulation of FGF-2. To test this hypothesis, the present study compared the effect of acute (1 day) vs. chronic (7 days) ECS treatment on levels of mRNA for FGF-2 in rhinal and frontal cortices, hippocampus, and olfactory bulbs. In addition, mRNA for another prominent neurotrophic factor, nerve growth factor (NGF), was assayed concurrently. At 8 h after acute ECS, mRNA levels increased by 60% for FGF-2 and 136% for NGF in rhinal cortex, 32% for FGF-2 and 36% for NGF in frontal cortex, and by 13% for NGF in hippocampus. After 7 days of ECS treatment the respective increases were 72% and 80%, 53% and 38%, and 28%. No increases were observed in olfactory bulbs after either treatment regimen. The peak increases in FGF-2 mRNA were consistently greater after chronic treatment, but the differences from those seen acutely reached significance in frontal cortex only. However, the duration over which mRNA for FGF-2 was elevated did not differ between the acute and chronic ECS groups. NGF mRNA induction was neither enhanced nor prolonged as a result of chronic ECS as compared to acute ECS treatment. These results suggest that chronic ECS treatment may lead to an enhanced rate of transcription of message for FGF-2 but not for NGF, in selected brain regions. At the same time, the results indicate that chronic ECS treatment induces FGF-2 and NGF mRNA expression in a tissue-specific manner and that this induction is maintained over the 7-day treatment period. The sustained increases in mRNAs for these trophic factors may contribute to the neuroprotective actions of chronic ECS treatment.

Collaboration


Dive into the Alexei Kondratyev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinsook Kim

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand Lakhkar

Georgetown University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge