Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick A. Forcelli is active.

Publication


Featured researches published by Patrick A. Forcelli.


Journal of Neurotrauma | 2012

The Effect of Injury Severity on Behavior: A Phenotypic Study of Cognitive and Emotional Deficits after Mild, Moderate, and Severe Controlled Cortical Impact Injury in Mice

Patricia M. Washington; Patrick A. Forcelli; Tiffany Wilkins; David N. Zapple; Maia Parsadanian; Mark P. Burns

Traumatic brain injury (TBI) can cause a broad array of behavioral problems including cognitive and emotional deficits. Human studies comparing neurobehavioral outcomes after TBI suggest that cognitive impairments increase with injury severity, but emotional problems such as anxiety and depression do not. To determine whether cognitive and emotional impairments increase as a function of injury severity we exposed mice to sham, mild, moderate, or severe controlled cortical impact (CCI) and evaluated performance on a variety of neurobehavioral tests in the same animals before assessing lesion volume as a histological measure of injury severity. Increasing cortical impact depth successfully produced lesions of increasing severity in our model. We found that cognitive impairments in the Morris water maze increased with injury severity, as did the degree of contralateral torso flexion, a measure of unilateral striatal damage. TBI also caused deficits in emotional behavior as quantified in the forced swim test, elevated-plus maze, and prepulse inhibition of acoustic startle, but these deficits were not dependent on injury severity. Stepwise regression analyses revealed that Morris water maze performance and torso flexion predicted the majority of the variability in lesion volume. In summary, we find that cognitive deficits increase in relation to injury severity, but emotional deficits do not. Our data suggest that the threshold for emotional changes after experimental TBI is low, with no variation in behavioral deficits seen between mild and severe brain injury.


Annals of Neurology | 2012

Neonatal exposure to antiepileptic drugs disrupts striatal synaptic development

Patrick A. Forcelli; Megan J. Janssen; Stefano Vicini; Karen Gale

Drug exposure during critical periods of brain development may adversely affect nervous system function, posing a challenge for treating infants. This is of particular concern for treating neonatal seizures, as early life exposure to drugs such as phenobarbital is associated with adverse neurological outcomes in patients and induction of neuronal apoptosis in animal models. The functional significance of the preclinical neurotoxicity has been questioned due to the absence of evidence for functional impairment associated with drug‐induced developmental apoptosis.


Journal of Pharmacology and Experimental Therapeutics | 2012

Effects of neonatal antiepileptic drug exposure on cognitive, emotional, and motor function in adult rats.

Patrick A. Forcelli; Ryan Kozlowski; Charles Snyder; Alexei Kondratyev; Karen Gale

Despite the potent proapoptotic effect of several antiepileptic drugs (AEDs) in developmental rodent models, little is known about the long-term impact of exposure during brain development. Clinically, this is of growing concern. To determine the behavioral consequences of such exposure, we examined phenobarbital, phenytoin, and lamotrigine for their effects on adult behaviors after administration to neonatal rats throughout the second postnatal week. AED treatment from postnatal days 7 to 13 resulted in adult deficits in spatial learning in the Morris water maze and decreased social exploration for all drugs tested. Phenobarbital exposure led to deficits in cued fear conditioning, risk assessment in the elevated plus maze, and sensorimotor gating as measured by prepulse inhibition, but it did not affect motor coordination on the rotorod task. In contrast, phenytoin and lamotrigine exposure led to impaired rotorod performance, but no deficits in sensorimotor gating. Phenytoin, but not lamotrigine or phenobarbital, increased exploration in the open field. Phenytoin and phenobarbital, but not lamotrigine, disrupted cued fear conditioning. These results indicate that AED administration during a limited sensitive postnatal period is sufficient to cause a range of behavioral deficits later in life, and the specific profile of behavioral deficits varies across drugs. The differences in the long-term outcomes associated with the three AEDs examined are not predicted by either the mechanism of AED action or the proapoptotic effect of the drugs. Our findings suggest that a history of AED therapy during development must be considered as a variable when assessing later-life cognitive and psychiatric outcomes.


Epilepsia | 2011

Pattern of antiepileptic drug–induced cell death in limbic regions of the neonatal rat brain

Patrick A. Forcelli; Jinsook Kim; Alexei Kondratyev; Karen Gale

The induction of neuronal apoptosis throughout many regions of the developing rat brain by phenobarbital and phenytoin, two drugs commonly used for the treatment of neonatal seizures, has been well documented. However, several limbic regions have not been included in previous analyses. Because drug‐induced damage to limbic brain regions in infancy could contribute to emotional and psychiatric sequelae, it is critical to determine the extent to which these regions are vulnerable to developmental neurotoxicity. To evaluate the impact of antiepileptic drug (AED) exposure on limbic nuclei, we treated postnatal day 7 rat pups with phenobarbital, phenytoin, carbamazepine, or vehicle, and examined nucleus accumbens, septum, amygdala, piriform cortex, and frontal cortex for cell death. Histologic sections were processed using the terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL) assay to label apoptotic cells. Nucleus accumbens displayed the highest level of baseline cell death (vehicle group), as well as the greatest net increase in cell death following phenobarbital or phenytoin. Phenobarbital exposure resulted in a significant increase in cell death in all brain regions, whereas phenytoin exposure increased cell death only in the nucleus accumbens. Carbamazepine was without effect on cell death in any brain region analyzed, suggesting that the neurotoxicity observed is not an inherent feature of AED action. Our findings demonstrate pronounced cell death in several important regions of the rat limbic system following neonatal administration of phenobarbital, the first‐line treatment for neonatal seizures in humans. These findings raise the possibility that AED exposure in infancy may contribute to adverse neuropsychiatric outcomes later in life.


Neurobiology of Disease | 2015

α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson's disease.

Joel Credle; Patrick A. Forcelli; Michael Delannoy; Adam W. Oaks; Eva Permaul; Deborah L. Berry; Valeriy Duka; Jonathan Wills; Anita Sidhu

The unfolded protein response (UPR) monitors the folding environment within the endoplasmic reticulum (ER). Accumulation of misfolded proteins within the ER activates the UPR resulting in the execution of adaptive or non-adaptive signaling pathways. α-Synuclein (α-syn) whose accumulation and aggregation define the pathobiology of Parkinsons disease (PD) has been shown to inhibit ER-Golgi transit of COPII vesicles. ATF6, a protective branch of the UPR, is processed via COPII mediated ER-Golgi transit following its activation via ER stress. Using cellular PD models together with biochemical reconstitution assays, we showed that α-syn inhibited processing of ATF6 directly through physical interactions and indirectly through restricted incorporation into COPII vesicles. Impaired ATF6 signaling was accompanied by decreased ER-associated degradation (ERAD) function and increased pro-apoptotic signaling. The mechanism by which α-syn inhibits ATF6 signaling expands our understanding of the role ER stress and the UPR play in neurodegenerative diseases such as PD.


The Journal of Neuroscience | 2013

Defense-Like Behaviors Evoked by Pharmacological Disinhibition of the Superior Colliculus in the Primate

Jacqueline T. DesJardin; Angela L. Holmes; Patrick A. Forcelli; Claire E. Cole; John T. Gale; Laurie L. Wellman; Karen Gale; Ludise Malkova

Stimulation of the intermediate and deep layers of superior colliculus (DLSC) in rodents evokes both orienting/pursuit (approach) and avoidance/flight (defense) responses (Dean et al., 1989). These two classes of response are subserved by distinct output projections associated with lateral (approach) and medial (defense) DLSC (Comoli et al., 2012). In non-human primates, DLSC has been examined only with respect to orienting/approach behaviors, especially eye movements, and defense-like behaviors have not been reported. Here we examined the profile of behavioral responses evoked by activation of DLSC by unilateral intracerebral infusions of the GABAA receptor antagonist, bicuculline methiodide (BIC), in nine freely moving macaques. Across animals, the most consistently evoked behavior was cowering (all animals), followed by increased vocalization and escape-like behaviors (seven animals), and attack of objects (three animals). The effects of BIC were dose-dependent within the range 2.5–14 nmol (threshold dose of 4.6 nmol). The behaviors and their latencies to onset did not vary across different infusion sites within DLSC. Cowering and escape-like behaviors resembled the defense-like responses reported after DLSC stimulation in rats, but in the macaques these responses were evoked from both medial and lateral sites within DLSC. Our findings are unexpected in the context of an earlier theoretical perspective (Dean et al., 1989) that emphasized a preferential role of the primate DLSC for approach rather than defensive responses. Our data provide the first evidence for induction of defense-like behaviors by activation of DLSC in monkeys, suggesting that the role of DLSC in responding to threats is conserved across species.


Frontiers in Neural Circuits | 2015

The piriform, perirhinal, and entorhinal cortex in seizure generation

Marta Vismer; Patrick A. Forcelli; Mark Skopin; Karen Gale; Mohamad Z. Koubeissi

Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis.


Epilepsia | 2010

Therapeutic strategies to avoid long term adverse outcomes of neonatal antiepileptic drug exposure

Patrick A. Forcelli; Megan J. Janssen; Lauren A. Stamps; Cameron T. Sweeney; Stefano Vicini; Karen Gale

Antiepileptic drugs (AEDs) such as phenobarbital, phenytoin, and valproic acid, when given in therapeutic doses to neonatal rats, cause pronounced neuronal apoptotic cell death. This effect is especially pronounced in the striatum and cortex during the second postnatal week, a period corresponding to the “brain growth spurt” (third trimester of gestation and early infancy) in humans. Of particular concern is the fact that phenobarbital is the most frequently used therapy for neonatal epilepsy. If AED‐induced neuronal cell death leads to long‐term functional impairment, then it becomes crucial to find therapies that avoid this neurotoxicity in the sensitive period. Herein we examine short‐ and long‐term functional effects following exposure of neonatal rat pups to phenobarbital; the functions tested include striatal γ‐aminobutyric acid (GABA)ergic synaptic responses and reflex development in pups, and fear conditioning, emotionality, and sensory‐motor gating in adults. In all cases, phenobarbital exposure during the second postnatal week was sufficient to cause significant impairment. In contrast, adult animals exposed as pups to lamotrigine (given in a dose that does not cause apoptotic neuronal death) were not impaired on the tasks we examined. Our data suggest that treatments devoid of proapoptotic actions may be promising therapies for avoiding adverse outcomes after neonatal exposure. In addition, our findings identify early exposure to certain AEDs as an important potential risk factor contributing to psychiatric and neurologic abnormalities later in life.


Behavioural Brain Research | 2015

Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders

Rachel Wurzman; Patrick A. Forcelli; Christopher J. Griffey; Lawrence F. Kromer

EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.


Neuropharmacology | 2012

Neonatal exposure to phenobarbital potentiates schizophrenia-like behavioral outcomes in the rat.

Sanjeev K. Bhardwaj; Patrick A. Forcelli; G. Palchik; Karen Gale; Lalit K. Srivastava; Alexei Kondratyev

Previous work has indicated an association between seizures early in life and increased risk of psychiatric disorders, including schizophrenia. However, because early-life seizures are commonly treated with antiepileptic drugs (AEDs) such as phenobarbital, the possibility that drug treatment may affect later-life psychiatric outcomes needs to be evaluated. We therefore tested the hypothesis that phenobarbital exposure in the neonatal rat increases the risk of schizophrenia-like behavioral abnormalities in adulthood. Thus, in this study, we examined the effects of a single acute neonatal exposure to phenobarbital on adult behavioral outcomes in the rat neonatal ventral hippocampal (nVH) lesion model of schizophrenia. We compared these outcomes to those in rats a) without nVH lesions and b) with nVH lesions, without phenobarbital. The tasks used for behavioral evaluation were: amphetamine-induced locomotion, prepulse inhibition, elevated plus-maze, and novel object recognition task. We found that neonatal phenobarbital treatment (in the absence of nVH lesions) was sufficient to disrupt sensorimotor gating (as tested by prepulse inhibition) in adulthood to an extent equivalent to nVH lesions. Additionally, neonatal phenobarbital exposure enhanced the locomotor response to amphetamine in adult animals with and without nVH lesions. Our findings suggest that neonatal exposure to phenobarbital can predispose to schizophrenia-like behavioral abnormalities. Our findings underscore the importance of examining AED exposure early in life as a potential risk factor for later-life neuropsychiatric abnormalities in clinical populations.

Collaboration


Dive into the Patrick A. Forcelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludise Malkova

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. West

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurie L. Wellman

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge