Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei Protopopov is active.

Publication


Featured researches published by Alexei Protopopov.


Nature | 2011

Telomere dysfunction induces metabolic and mitochondrial compromise

Ergiin Sahin; Simona Colla; Marc Liesa; Javid Moslehi; Florian Muller; Mira Guo; Marcus P. Cooper; Darrell N. Kotton; Attila J. Fabian; Carl Walkey; Richard S. Maser; Giovanni Tonon; Friedrich Foerster; Robert Xiong; Y. Alan Wang; Sachet A. Shukla; Mariela Jaskelioff; Eric Martin; Timothy P. Heffernan; Alexei Protopopov; Elena Ivanova; John E. Mahoney; Maria Kost-Alimova; Samuel R. Perry; Roderick T. Bronson; Ronglih Liao; Richard C. Mulligan; Orian S. Shirihai; Lynda Chin; Ronald A. DePinho

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.


Nature | 2012

DNA breaks and chromosome pulverization from errors in mitosis

Karen Crasta; Neil J. Ganem; Regina Dagher; Alexandra B. Lantermann; Elena Ivanova; Yunfeng Pan; Luigi Nezi; Alexei Protopopov; Dipanjan Chowdhury; David Pellman

The involvement of whole-chromosome aneuploidy in tumorigenesis is the subject of debate, in large part because of the lack of insight into underlying mechanisms. Here we identify a mechanism by which errors in mitotic chromosome segregation generate DNA breaks via the formation of structures called micronuclei. Whole-chromosome-containing micronuclei form when mitotic errors produce lagging chromosomes. We tracked the fate of newly generated micronuclei and found that they undergo defective and asynchronous DNA replication, resulting in DNA damage and often extensive fragmentation of the chromosome in the micronucleus. Micronuclei can persist in cells over several generations but the chromosome in the micronucleus can also be distributed to daughter nuclei. Thus, chromosome segregation errors potentially lead to mutations and chromosome rearrangements that can integrate into the genome. Pulverization of chromosomes in micronuclei may also be one explanation for ‘chromothripsis’ in cancer and developmental disorders, where isolated chromosomes or chromosome arms undergo massive local DNA breakage and rearrangement.


Nature | 2012

Melanoma genome sequencing reveals frequent PREX2 mutations

Michael F. Berger; Eran Hodis; Timothy P. Heffernan; Yonathan Lissanu Deribe; Michael S. Lawrence; Alexei Protopopov; Elena S Ivanova; Ian R. Watson; Elizabeth Nickerson; Papia Ghosh; Hailei Zhang; Rhamy Zeid; Xiaojia Ren; Kristian Cibulskis; Andrey Sivachenko; Nikhil Wagle; Antje Sucker; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Daniel Auclair; Timothy Fennell; Scott L. Carter; Yotam Drier; Petar Stojanov; Meredith A. Singer; Douglas Voet; Rui Jing; Gordon Saksena; Jordi Barretina

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Nature | 2011

Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice

Mariela Jaskelioff; Florian Muller; Ji Hye Paik; Emily Thomas; Shan Jiang; Andrew C. Adams; Ergun Sahin; Maria Kost-Alimova; Alexei Protopopov; Juan Cadiñanos; James W. Horner; Eleftheria Maratos-Flier; Ronald A. DePinho

An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2+ neural progenitors, Dcx+ newborn neurons, and Olig2+ oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase-dependent neurogenesis resulted in alleviation of hyposmia and recovery of innate olfactory avoidance responses. Accumulating evidence implicating telomere damage as a driver of age-associated organ decline and disease risk and the marked reversal of systemic degenerative phenotypes in adult mice observed here support the development of regenerative strategies designed to restore telomere integrity.


Science | 2014

Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing

Jianjun Zhang; Junya Fujimoto; Jianhua Zhang; David C. Wedge; Xingzhi Song; Jiexin Zhang; Sahil Seth; Chi Wan Chow; Yu Cao; Curtis Gumbs; Kathryn A. Gold; Neda Kalhor; Latasha Little; Harshad S. Mahadeshwar; Cesar A. Moran; Alexei Protopopov; Huandong Sun; Jiabin Tang; Xifeng Wu; Yuanqing Ye; William N. William; J. Jack Lee; John V. Heymach; Waun Ki Hong; Stephen G. Swisher; Ignacio I. Wistuba; Andrew Futreal

Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. Different mutations are present in different regions of any given lung cancer, and their pattern may predict patient relapse. [Also see Perspective by Govindan] Space, time, and the lung cancer genome Lung cancer poses a formidable challenge to clinical oncologists. It is often detected at a late stage, and most therapies work for only a short time before the tumors resume their relentless growth. Two independent analyses of the human lung cancer genome may help explain why this disease is so resilient (see the Perspective by Govindan). Rather than take a single “snapshot” of the cancer genome, de Bruin et al. and Zhang et al. identified genomic alterations in spatially distinct regions of single lung tumors and used this information to infer the tumors evolutionary history. Each tumor showed tremendous spatial and temporal diversity in its mutational profiles. Thus, the efficacy of drugs may be short-lived because they destroy only a portion of the tumor. Science, this issue p. 251, p. 256; see also p. 169


Nature | 2007

Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers

Richard S. Maser; Bhudipa Choudhury; Peter J. Campbell; Bin Feng; Kwok-Kin Wong; Alexei Protopopov; Jennifer O'Neil; Alejandro Gutierrez; Elena Ivanova; Ilana Perna; Eric Lin; Vidya Mani; Shan Jiang; Kate McNamara; Sara Zaghlul; Sarah Edkins; Claire Stevens; Cameron Brennan; Eric Martin; Ruprecht Wiedemeyer; Omar Kabbarah; Cristina Nogueira; Gavin Histen; Marc R. Mansour; Veronique Duke; Letizia Foroni; Adele K. Fielding; Anthony H. Goldstone; Jacob M. Rowe; Yaoqi A. Wang

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.


Blood | 2009

High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia.

Alejandro Gutierrez; Takaomi Sanda; Ruta Grebliunaite; Arkaitz Carracedo; Leonardo Salmena; Yebin Ahn; Suzanne E. Dahlberg; Donna Neuberg; Lisa A. Moreau; Stuart S. Winter; Richard S. Larson; Jianhua Zhang; Alexei Protopopov; Lynda Chin; Pier Paolo Pandolfi; Lewis B. Silverman; Stephen P. Hunger; Stephen E. Sallan; A. Thomas Look

To more comprehensively assess the pathogenic contribution of the PTEN-PI3K-AKT pathway to T-cell acute lymphoblastic leukemia (T-ALL), we examined diagnostic DNA samples from children with T-ALL using array comparative genomic hybridization and sequence analysis. Alterations of PTEN, PI3K, or AKT were identified in 47.7% of 44 cases. There was a striking clustering of PTEN mutations in exon 7 in 12 cases, all of which were predicted to truncate the C2 domain without disrupting the phosphatase domain of PTEN. Induction chemotherapy failed to induce remission in 3 of the 4 patients whose lymphoblasts harbored PTEN deletions at the time of diagnosis, compared with none of the 12 patients with mutations of PTEN exon 7 (P = .007), suggesting that PTEN deletion has more adverse therapeutic consequences than mutational disruptions that preserve the phosphatase domain. These findings add significant support to the rationale for the development of therapies targeting the PTEN-PI3K-AKT pathway in T-ALL.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis

Koen Dreijerink; E. A. Braga; Igor Kuzmin; Laura Geil; Fuh-Mei Duh; Debora Angeloni; Berton Zbar; Michael I. Lerman; Eric J. Stanbridge; John D. Minna; Alexei Protopopov; Jingfeng Li; George Klein; Eugene R. Zabarovsky

Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1As GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region.


Journal of Biological Chemistry | 2014

Identification of Double-stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and p53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer

Christoph Kahlert; Sonia A. Melo; Alexei Protopopov; Jiabin Tang; Sahil Seth; Moritz Koch; Jianhua Zhang; Juergen Weitz; Lynda Chin; Andrew Futreal; Raghu Kalluri

Background: Exosomes are small vesicles in the tumor microenvironment containing nucleic acids and proteins with the capacity to influence cell behavior. Results: Exosomes contain double-stranded genomic DNA. Conclusion: Exosomes have the capacity to carry and transport genomic DNA spanning all chromosomes with KRAS and p53 mutations. Significance: Exosomes can aid in identifying genomic mutations in patients with pancreatic cancer. Exosomes are small vesicles (50–150 nm) of endocytic origin that are released by many different cell types. Exosomes in the tumor microenvironment may play a key role in facilitating cell-cell communication. Exosomes are reported to predominantly contain RNA and proteins. In this study, we investigated whether exosomes from pancreatic cancer cells and serum from patients with pancreatic ductal adenocarcinoma contain genomic DNA. Our results provide evidence that exosomes contain >10-kb fragments of double-stranded genomic DNA. Mutations in KRAS and p53 can be detected using genomic DNA from exosomes derived from pancreatic cancer cell lines and serum from patients with pancreatic cancer. In addition, using whole genome sequencing, we demonstrate that serum exosomes from patients with pancreatic cancer contain genomic DNA spanning all chromosomes. These results indicate that serum-derived exosomes can be used to determine genomic DNA mutations for cancer prediction, treatment, and therapy resistance.


Nature Cell Biology | 2013

Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment

César Nombela-Arrieta; Gregory Pivarnik; Beatrice Winkel; Kimberly J. Canty; Brendan A. Harley; John E. Mahoney; Shin-Young Park; Jiayun Lu; Alexei Protopopov; Leslie E. Silberstein

The existence of a haematopoietic stem cell niche as a spatially confined regulatory entity relies on the notion that haematopoietic stem and progenitor cells (HSPCs) are strategically positioned in unique bone marrow microenvironments with defined anatomical and functional features. Here, we employ a powerful imaging cytometry platform to perform a comprehensive quantitative analysis of HSPC distribution in bone marrow cavities of femoral bones. We find that HSPCs preferentially localize in endosteal zones, where most closely interact with sinusoidal and non-sinusoidal bone marrow microvessels, which form a distinctive circulatory system. In situ tissue analysis reveals that HSPCs exhibit a hypoxic profile, defined by strong retention of pimonidazole and expression of HIF- 1α, regardless of localization throughout the bone marrow, adjacency to vascular structures or cell-cycle status. These studies argue that the characteristic hypoxic state of HSPCs is not solely the result of a minimally oxygenated niche but may be partially regulated by cell-specific mechanisms.

Collaboration


Dive into the Alexei Protopopov's collaboration.

Top Co-Authors

Avatar

Lynda Chin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianhua Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Stephen Lyle

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shan Jiang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge