Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ronald A. DePinho is active.

Publication


Featured researches published by Ronald A. DePinho.


Nature | 2014

Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function

Andrea Viale; Piergiorgio Pettazzoni; Costas A. Lyssiotis; Haoqiang Ying; Nora Sanchez; Matteo Marchesini; Alessandro Carugo; Tessa Green; Sahil Seth; Virginia Giuliani; Maria Kost-Alimova; Florian Muller; Simona Colla; Luigi Nezi; Giannicola Genovese; Angela K. Deem; Avnish Kapoor; Wantong Yao; Emanuela Brunetto; Ya’an Kang; Min Yuan; John M. Asara; Y. Alan Wang; Timothy P. Heffernan; Alec C. Kimmelman; Huamin Wang; Jason B. Fleming; Lewis C. Cantley; Ronald A. DePinho; Giulio Draetta

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (KrasG12D, herein KRas) in a p53LoxP/WT background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Cell | 2014

Yap1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer

Avnish Kapoor; Wantong Yao; Haoqiang Ying; Sujun Hua; Alison Liewen; Qiuyun Wang; Yi Zhong; Chang Jiun Wu; Anguraj Sadanandam; Baoli Hu; Qing Chang; Gerald C. Chu; Ramsey Al-Khalil; Shan Jiang; Hongai Xia; Eliot Fletcher-Sananikone; Carol Lim; Gillian I. Horwitz; Andrea Viale; Piergiorgio Pettazzoni; Nora Sanchez; Huamin Wang; Alexei Protopopov; Jianhua Zhang; Timothy P. Heffernan; Randy L. Johnson; Lynda Chin; Y. Alan Wang; Giulio Draetta; Ronald A. DePinho

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Cell Metabolism | 2013

Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1

Daisuke Kajimura; Ha Won Lee; Kyle J. Riley; Emilio Arteaga-Solis; Mathieu Ferron; Bin Zhou; Christopher J. Clarke; Yusuf A. Hannun; Ronald A. DePinho; X. Edward Guo; J. John Mann; Gerard Karsenty

The synthesis of adiponectin, an adipokine with ill-defined functions in animals fed a normal diet, is enhanced by the osteoblast-derived hormone osteocalcin. Here we show that adiponectin signals back in osteoblasts to hamper their proliferation and favor their apoptosis, altogether decreasing bone mass and circulating osteocalcin levels. Adiponectin fulfills these functions, independently of its known receptors and signaling pathways, by decreasing FoxO1 activity in a PI3-kinase-dependent manner. Over time, however, these local effects are masked because adiponectin signals in neurons of the locus coeruleus, also through FoxO1, to decrease the sympathetic tone, thereby increasing bone mass and decreasing energy expenditure. This study reveals that adiponectin has the unusual ability to regulate the same function in two opposite manners depending on where it acts and that it opposes, partially, leptins influence on the sympathetic nervous system. It also proposes that adiponectin regulation of bone mass occurs through a PI3-kinase-FoxO1 pathway.


Cell Metabolism | 2012

FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis.

Kyoichiro Tsuchiya; Jun Tanaka; Yu Shuiqing; Carrie L. Welch; Ronald A. DePinho; Ira Tabas; Alan R. Tall; Ira J. Goldberg; Domenico Accili

Atherosclerotic cardiovascular disease is the leading cause of death in insulin-resistant (type 2) diabetes. Vascular endothelial dysfunction paves the way for atherosclerosis through impaired nitric oxide availability, inflammation, and generation of superoxide. Surprisingly, we show that ablation of the three genes encoding isoforms of transcription factor FoxO in endothelial cells prevents atherosclerosis in low-density lipoprotein receptor knockout mice by reversing these subphenotypes. Paradoxically, the atheroprotective effect of FoxO deletion is associated with a marked decrease of insulin-dependent Akt phosphorylation in endothelial cells, owing to reduced FoxO-dependent expression of the insulin receptor adaptor proteins Irs1 and Irs2. These findings support a model in which FoxO is the shared effector of multiple atherogenic pathways in endothelial cells. FoxO ablation lowers the threshold of Akt activity required for protection from atherosclerosis. The data demonstrate that FoxO inhibition in endothelial cells has the potential to mediate wide-ranging therapeutic benefits for diabetes-associated cardiovascular disease.


Journal of Clinical Investigation | 2012

FOXO1 in the ventromedial hypothalamus regulates energy balance

Ki Woo Kim; Jose Donato; Eric D. Berglund; Yun Hee Choi; Daisuke Kohno; Carol F. Elias; Ronald A. DePinho; Joel K. Elmquist

The transcription factor FOXO1 plays a central role in metabolic homeostasis by regulating leptin and insulin activity in many cell types, including neurons. However, the neurons mediating these effects and the identity of the molecular targets through which FOXO1 regulates metabolism remain to be defined. Here, we show that the ventral medial nucleus of the hypothalamus (VMH) is a key site of FOXO1 action. We found that mice lacking FOXO1 in steroidogenic factor 1 (SF-1) neurons of the VMH are lean due to increased energy expenditure. The mice also failed to appropriately suppress energy expenditure in response to fasting. Furthermore, these mice displayed improved glucose tolerance due to increased insulin sensitivity in skeletal muscle and heart. Gene expression profiling and sequence analysis revealed several pathways regulated by FOXO1. In addition, we identified the nuclear receptor SF-1 as a direct FOXO1 transcriptional target in the VMH. Collectively, our data suggest that the transcriptional networks modulated by FOXO1 in VMH neurons are key components in the regulation of energy balance and glucose homeostasis.


Cancer Cell | 2017

Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment.

Qianghu Wang; Baoli Hu; Xin Hu; Hoon Kim; Massimo Squatrito; Lisa Scarpace; Ana C. deCarvalho; Sali Lyu; Pengping Li; Yan Li; Floris P. Barthel; Hee Jin Cho; Yu Hsi Lin; Nikunj Satani; Emmanuel Martinez-Ledesma; Siyuan Zheng; Edward F. Chang; Charles Etienne Gabriel Sauvé; Adriana Olar; Zheng D. Lan; Gaetano Finocchiaro; Joanna J. Phillips; Mitchel S. Berger; Konrad Gabrusiewicz; Guocan Wang; Eskil Eskilsson; Jian Hu; Tom Mikkelsen; Ronald A. DePinho; Florian Muller

We leveraged IDH wild-type glioblastomas, derivative neurospheres, and single-cell gene expression profiles to define three tumor-intrinsic transcriptional subtypes designated as proneural, mesenchymal, and classical. Transcriptomic subtype multiplicity correlated with increased intratumoral heterogeneity and presence of tumor microenvironment. In silico cell sorting identified macrophages/microglia, CD4+ T lymphocytes, and neutrophils in the glioma microenvironment. NF1 deficiency resulted in increased tumor-associated macrophages/microglia infiltration. Longitudinal transcriptome analysis showed that expression subtype is retained in 55% of cases. Gene signature-based tumor microenvironment inference revealed a decrease in invading monocytes and a subtype-dependent increase in macrophages/microglia cells upon disease recurrence. Hypermutation at diagnosis or at recurrence associated with CD8+ Txa0cell enrichment. Frequency of M2 macrophages detection associated with short-term relapse after radiation therapy.


Cancer Cell | 2014

Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure.

Vikash P. Chauhan; Yves Boucher; C.R. Ferrone; Sylvie Roberge; John D. Martin; Triantafyllos Stylianopoulos; Nabeel Bardeesy; Ronald A. DePinho; Timothy P. Padera; Rakesh K. Jain

Impaired perfusion is a hallmark of solid tumors that promotes progression, immunosuppression and treatment-resistance, and is partly caused by vascular compression from excessive extravascular stresses (Chauhan et al., 2013; Stylianopoulos et al., 2012). The extravascular stress exerted by fluid is referred to as interstitial fluid pressure (IFP) and that by solid components as solid stress (SS). IFP is near-zero in most tissues, but rises in tumors as impaired lymphatics fail to drain fluid leaking from blood vessels and IFP equilibrates with microvascular pressure (MVP) (Boucher and Jain, 1992). Due to equilibration, IFP in tumors can only transiently exceed MVP and thus cannot compress tumor vessels (Figure S1A). SS is generated as cells push and pull on their surroundings during proliferation and migration, and is transmitted by extracellular matrix (Stylianopoulos et al., 2012). SS is greatly and chronically elevated in tumors due to high cell and matrix densities, and can compress blood vessels (Figure S1A). Since the causes and consequences of elevated IFP and SS are different, strategies for alleviating these mechanical stresses are likely to be distinct. n nIn their article, Provenzano et al. elegantly showed that hyaluronan (HA) can mechanically compress blood vessels in pancreatic ductal adenocarcinoma (PDA) (Provenzano et al., 2012). However, their proposed mechanism—that HA leads to very high IFP that collapses vessels—is not consistent with the physiology of fluid homeostasis and calls for careful assessment of IFP in PDAs. They suggest that mean IFP can reach 99 mmHg (range 75–130 mmHg), presumably higher than MVP, in the Pdx1-Cre/KrasLSL-G12D/+/p53LSL-R172H/+ (KPC) PDA model based on measurements using a piezoelectric-probe. To evaluate this, we measured IFP in KPC tumors (Figure S1B) with the wick-in-needle technique—which has been validated against the gold-standard micropipette technique (Boucher and Jain, 1992). We further measured IFP in additional PDA models, Ptf1-Cre/KrasLSL-G12D/+/p53L/+ (KPdC) and Ptf1-Cre/ROSA26-LSL-rtTA-IRES-GFP/KrasTetO-LSL-G12D/+/p53L/+ (iKPdC), which highly express HA (Figure S1E). The mean IFP was 8.1 mmHg (range 4.7–10.9 mmHg) in KPC, 3.4 mmHg (range 1.6–5.6 mmHg) in KPdC, and 6.7 mmHg (range 6.1–8.0 mmHg) in iKPdC—over an order of magnitude lower than the IFP levels reported by Provenzano et al. We also measured IFP with wick-in-needle in the tumors of four treatment-naive PDA patients (Figure S1B), and the mean IFP was 11.8 mmHg (range 6.1–16.6 mmHg). As these IFPs are in the range of typical MVPs, our established concept holds: SS compresses PDA vessels while IFP cannot. n nProvenzano et al. also propose that PDA IFP is not driven by equilibration with MVP because PDA vessels are non-leaky, i.e. non-permeable to macromolecules. As evidence, they state that PDA IFP measured with the piezeoelectric-probe remains elevated upon cardiac cessation, indicating that blood pressure is not driving IFP. With wick-in-needle, we found that cardiac cessation reduced IFP to zero in all three PDA models, confirming that blood pressure drives elevated IFP (Boucher and Jain, 1992). Furthermore, their hypothesis that PDA vessels are non-permeable to macromolecules is contradicted by their own data—PEGPH20, a macromolecule, clearly permeates across PDA vessels since it acts on interstitial HA. Moreover, the efficacy in PDA patients of nanoparticle-albumin-bound-paclitaxel, an FDA-approved macromolecule, also indicates that PDA vessels are somewhat leaky. We conclude that PDA IFP is indeed driven by blood pressure, and that fluid exchange between the intravascular and interstitial space in PDA facilitates equilibration of IFP and MVP as in other tumors. n nThe discrepancy between our IFP measurements and those of Provenzano et al. may stem from their use of the piezoelectric-probe technique (Ozerdem and Hargens, 2005), which we believe suffers from artifacts coming from SS. As strong evidence for our hypothesis, Provenzano et al. measured an IFP of 10.4 mmHg (range 8–13 mmHg) in normal mouse pancreata, although normal murine tissues typically have slightly negative IFPs. Ozerdem and Hargens tested this technique against wick-in-needle in a single tumor model in two mice, but they did not carefully test for such artifacts—for example by comparing to wick-in-needle in tissues of varying matrix or cell density. We therefore compared the piezoelectric-probe technique to wick-in-needle in multiple normal murine tissues. We found that the piezoelectric-probe produces significantly higher measurements when compared with wick-in-needle (Figure S1C, D). For example, we measured pancreas IFP as -0.7 mmHg (range -0.9 – -0.5 mmHg) with wick-in-needle, whereas our pancreas measurements with the piezoelectric-probe were 9.8 mmHg (range 8.5–11.3 mmHg). This discrepancy likely occurs because the sensor in the piezoelectric-probe, unlike that in wick-in-needle, directly contacts cells and matrix allowing solid tissue components to contribute to the reading. We conclude that the piezoelectric-probe method developed by Ozerdem and Hargens—and used by Provenzano et al.—measures pressures that are higher than the actual IFP due to artifacts from solid tissue components. n nAs demonstrated here, HA-rich desmoplasia in PDA does not produce unusually high IFP, IFP cannot compress PDA vessels, and the technique Provenzano et al. used to measure IFP actually measures a combination of IFP and SS. Meanwhile, we found that HA increases SS through storage and transmission mechanisms (Stylianopoulos et al., 2012). Thus PEGPH20 likely reduces SS, thereby decompressing vessels. Since IFP cannot compress blood vessels, we propose that the mechanism of vessel decompression by PEGPH20 is solely a reduction in SS. Importantly, therapies that alleviate SS decompress vessels and improve PDA treatment (Chauhan et al., 2013). Thus we concur that PEGPH20 has immense promise for PDA, and we hope that this Correspondence clarifies its mechanism.


Cell | 2016

Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.

Baoli Hu; Qianghu Wang; Y. Alan Wang; Sujun Hua; Charles Etienne Gabriel Sauvé; Derrick Sek Tong Ong; Zheng D. Lan; Qing Chang; Yan Wing Ho; Marta Moreno Monasterio; Xin Lu; Yi Zhong; Jianhua Zhang; Pingna Deng; Zhi Tan; Guocan Wang; Wen Ting Liao; Lynda J. Corley; Haiyan Yan; Junxia Zhang; Yongping You; Ning Liu; Linbo Cai; Gaetano Finocchiaro; Joanna J. Phillips; Mitchel S. Berger; Denise J. Spring; Jian Hu; Erik P. Sulman; Gregory N. Fuller

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality ofxa0GBM.


Cancer Cell | 2015

Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome

Simona Colla; Derrick Sek Tong Ong; Yamini Ogoti; Matteo Marchesini; Nipun A. Mistry; Karen Clise-Dwyer; Sonny A. Ang; Paola Storti; Andrea Viale; Nicola Giuliani; Kathryn Ruisaard; Irene Ganan Gomez; Christopher A. Bristow; Marcos R. Estecio; David C. Weksberg; Yan Wing Ho; Baoli Hu; Giannicola Genovese; Piergiorgio Pettazzoni; Asha S. Multani; Shan Jiang; Sujun Hua; Michael C. Ryan; Alessandro Carugo; Luigi Nezi; Yue Wei; Hui Yang; Marianna D’Anca; Li Zhang; Sarah Gaddis

Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.


Nature | 2017

Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer

Prasenjit Dey; Joelle Baddour; Florian Muller; Chia Chin Wu; Huamin Wang; Wen Ting Liao; Zangdao Lan; Alina Chen; Tony Gutschner; Ya'an Kang; Jason B. Fleming; Nikunj Satani; Di Zhao; Abhinav Achreja; Lifeng Yang; Jiyoon Lee; Edward F. Chang; Giannicola Genovese; Andrea Viale; Haoqiang Ying; Giulio Draetta; Anirban Maitra; Y. Alan Wang; Deepak Nagrath; Ronald A. DePinho

The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime ‘collateral lethality’ therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.

Collaboration


Dive into the Ronald A. DePinho's collaboration.

Top Co-Authors

Avatar

Haoqiang Ying

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Florian Muller

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giulio Draetta

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avnish Kapoor

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Baoli Hu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lynda Chin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nikunj Satani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Piergiorgio Pettazzoni

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Simona Colla

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge