Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei Tikhonov is active.

Publication


Featured researches published by Alexei Tikhonov.


Nature | 2011

Species-specific responses of Late Quaternary megafauna to climate and humans

Eline D. Lorenzen; David Nogués-Bravo; Ludovic Orlando; Jaco Weinstock; Jonas Binladen; Katharine A. Marske; Andrew Ugan; Michael K. Borregaard; M. Thomas P. Gilbert; Rasmus Nielsen; Simon Y. W. Ho; Ted Goebel; Kelly E. Graf; David A. Byers; Jesper Stenderup; Morten Rasmussen; Paula F. Campos; Jennifer A. Leonard; Klaus-Peter Koepfli; Duane G. Froese; Grant D. Zazula; Thomas W. Stafford; Kim Aaris-Sørensen; Persaram Batra; Alan M. Haywood; Joy S. Singarayer; Paul J. Valdes; G. G. Boeskorov; James A. Burns; Sergey P. Davydov

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Nature | 2008

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller; Daniela I. Drautz; Aakrosh Ratan; Barbara Pusey; Ji Qi; Arthur M. Lesk; Lynn P. Tomsho; Michael Packard; Fangqing Zhao; Andrei Sher; Alexei Tikhonov; Brian J. Raney; Nick Patterson; Kerstin Lindblad-Toh; Eric S. Lander; James Knight; Gerard P. Irzyk; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Tom H. Pringle; Stephan C. Schuster

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5–2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.


Science | 2007

Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts

M. Thomas P. Gilbert; Lynn P. Tomsho; Snjezana Rendulic; Michael Packard; Daniela I. Drautz; Andrei Sher; Alexei Tikhonov; Love Dalén; T. A. Kuznetsova; Pavel A. Kosintsev; Paula F. Campos; Thomas Higham; Matthew J. Collins; Andrew S. Wilson; Fyodor Shidlovskiy; Bernard Buigues; Per G. P. Ericson; Mietje Germonpré; Anders Götherström; Paola Iacumin; V. I. Nikolaev; Malgosia Nowak-Kemp; James Knight; Gerard P. Irzyk; Clotilde S. Perbost; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Webb Miller; Stephan C. Schuster

Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was >50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.


Nature | 2014

Fifty thousand years of Arctic vegetation and megafaunal diet

John Davison; Mari Moora; Martin Zobel; Eric Coissac; Mary E. Edwards; Eline D. Lorenzen; Mette Vestergård; Galina Gussarova; James Haile; Joseph M. Craine; Ludovic Gielly; Sanne Boessenkool; Laura Saskia Epp; Rachid Cheddadi; David W. Murray; Kari Anne Bråthen; Nigel G. Yoccoz; Heather Binney; Corinne Cruaud; Patrick Wincker; Tomasz Goslar; Inger Greve Alsos; Eva Bellemain; Anne K. Brysting; Reidar Elven; J. H. Sønstebø; Julian B. Murton; Andrei Sher; Morten Rasmussen; Regin Rønn

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics

Paula F. Campos; Andrei Sher; Ludovic Orlando; Erik Axelsson; Alexei Tikhonov; Kim Aaris-Sørensen; Alex D. Greenwood; Ralf-Dietrich Kahlke; Pavel A. Kosintsev; Tatiana Krakhmalnaya; T. A. Kuznetsova; Philippe Lemey; Ross D. E. MacPhee; Christopher A. Norris; Kieran Shepherd; Marc A. Suchard; Grant D. Zazula; Beth Shapiro; M. Thomas P. Gilbert

The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at ≈45,000 radiocarbon years before present (14C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 14C YBP, recontracted at ca. 18,000 14C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

M. Thomas P. Gilbert; Daniela I. Drautz; Arthur M. Lesk; Simon Y. W. Ho; Ji Qi; Aakrosh Ratan; Chih-Hao Hsu; Andrei Sher; Love Dalén; Anders Götherström; Lynn P. Tomsho; Snjezana Rendulic; Michael Packard; Paula F. Campos; Tatyana V. Kuznetsova; Fyodor Shidlovskiy; Alexei Tikhonov; Paola Iacumin; Bernard Buigues; Per G. P. Ericson; Mietje Germonpré; Pavel A. Kosintsev; V. I. Nikolaev; Malgosia Nowak-Kemp; James Knight; Gerard P. Irzyk; Clotilde S. Perbost; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan

We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis of these and 13 recently published mtDNA genomes demonstrates the existence of two apparently sympatric mtDNA clades that exhibit high interclade divergence. The analytical power afforded by the analysis of the complete mtDNA genomes reveals a surprisingly ancient coalescence age of the two clades, ≈1–2 million years, depending on the calibration technique. Furthermore, statistical analysis of the temporal distribution of the 14C ages of these and previously identified members of the two mammoth clades suggests that clade II went extinct before clade I. Modeling of protein structures failed to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep.


Genome Research | 2014

Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

Jakob Skou Pedersen; Eivind Valen; Amhed M. V. Velazquez; Brian J. Parker; Morten Rasmussen; Stinus Lindgreen; Berit Lilje; Desmond J. Tobin; Theresa K. Kelly; Søren Vang; Robin Andersson; Peter A. Jones; Cindi A. Hoover; Alexei Tikhonov; Egor Prokhortchouk; Edward M. Rubin; Albin Sandelin; M. Thomas P. Gilbert; Anders Krogh; Ludovic Orlando

Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.


Current Biology | 2015

Evolutionary Genomics and Conservation of the Endangered Przewalski’s Horse

Clio Der Sarkissian; Luca Ermini; Mikkel Schubert; Melinda A. Yang; Pablo Librado; Matteo Fumagalli; Hákon Jónsson; Gila Kahila Bar-Gal; Anders Albrechtsen; Filipe G. Vieira; Bent Petersen; Aurélien Ginolhac; Andaine Seguin-Orlando; Kim Magnussen; Antoine Fages; Cristina Gamba; Belen Lorente-Galdos; Sagi Polani; Cynthia C. Steiner; Markus Neuditschko; Vidhya Jagannathan; Claudia Feh; Charles L. Greenblatt; Arne Ludwig; Natalia I. Abramson; Waltraut Zimmermann; Renate Schafberg; Alexei Tikhonov; Thomas Sicheritz-Pontén; Tomas Marques-Bonet

Przewalskis horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but survived in captivity, thanks to major conservation efforts. The current population is still endangered, with just 2,109 individuals, one-quarter of which are in Chinese and Mongolian reintroduction reserves [1]. These horses descend from a founding population of 12 wild-caught PHs and possibly up to four domesticated individuals [2-4]. With a stocky build, an erect mane, and stripped and short legs, they are phenotypically and behaviorally distinct from domesticated horses (DHs, Equus caballus). Here, we sequenced the complete genomes of 11 PHs, representing all founding lineages, and five historical specimens dated to 1878-1929 CE, including the Holotype. These were compared to the hitherto-most-extensive genome dataset characterized for horses, comprising 21 new genomes. We found that loci showing the most genetic differentiation with DHs were enriched in genes involved in metabolism, cardiac disorders, muscle contraction, reproduction, behavior, and signaling pathways. We also show that DH and PH populations split ∼45,000 years ago and have remained connected by gene-flow thereafter. Finally, we monitor the genomic impact of ∼110 years of captivity, revealing reduced heterozygosity, increased inbreeding, and variable introgression of domestic alleles, ranging from non-detectable to as much as 31.1%. This, together with the identification of ancestry informative markers and corrections to the International Studbook, establishes a framework for evaluating the persistence of genetic variation in future reintroduced populations.


Molecular Ecology | 2010

Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene

Paula F. Campos; Tommy Kristensen; Ludovic Orlando; Andrei Sher; M. V. Kholodova; Anders Götherström; Michael Hofreiter; Dorothée G. Drucker; Pavel A. Kosintsev; Alexei Tikhonov; Gennady F. Baryshnikov; M. Thomas P. Gilbert

Prior to the Holocene, the range of the saiga antelope (Saiga tatarica) spanned from France to the Northwest Territories of Canada. Although its distribution subsequently contracted to the steppes of Central Asia, historical records indicate that it remained extremely abundant until the end of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species’ genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two well‐supported, and clearly distinct, clades of saiga. The first, spanning a time range from >49 500 14C ybp to the present, comprises all the modern specimens and ancient samples from the Northern Urals, Middle Urals and Northeast Yakutia. The second clade is exclusive to the Northern Urals and includes samples dating from between 40 400 to 10 250 14C ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate Bayesian Computation analyses show the observed data is more compatible with a drastic population size reduction (c. 66–77%) following either a demographic bottleneck in the course of the Holocene or late Pleistocene, or a geographic fragmentation (followed by local extinction of one subpopulation) at the Holocene/Pleistocene transition.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments.

Pablo Librado; Clio Der Sarkissian; Luca Ermini; Mikkel Schubert; Hákon Jónsson; Anders Albrechtsen; Matteo Fumagalli; Melinda A. Yang; Cristina Gamba; Andaine Seguin-Orlando; Cecilie Mortensen; Bent Petersen; Cindi A. Hoover; Belen Lorente-Galdos; A. V. Nedoluzhko; Eugenia S. Boulygina; Svetlana V. Tsygankova; Markus Neuditschko; Vidhya Jagannathan; Catherine Thèves; Ahmed H. Alfarhan; Saleh A. Alquraishi; Khaled A. S. Al-Rasheid; Thomas Sicheritz-Pontén; Ruslan Popov; Semyon Grigoriev; Anatoly N Alekseev; Edward M. Rubin; Molly E. McCue; Stefan Rieder

Significance Yakutia is among the coldest regions in the Northern Hemisphere, showing ∼40% of its territory above the Arctic Circle. Native horses are particularly adapted to this environment, with body sizes and thick winter coats minimizing heat loss. We sequenced complete genomes of two ancient and nine present-day Yakutian horses to elucidate their evolutionary origins. We find that the contemporary population descends from domestic livestock, likely brought by early horse-riders who settled in the region a few centuries ago. The metabolic, anatomical, and physiological adaptations of these horses therefore emerged on very short evolutionary time scales. We show the relative importance of regulatory changes in the adaptive process and identify genes independently selected in cold-adapted human populations and woolly mammoths. Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below −70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski’s horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.

Collaboration


Dive into the Alexei Tikhonov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel A. Kosintsev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ross D. E. MacPhee

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Andrei Sher

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Semyon Grigoriev

North-Eastern Federal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergey Vartanyan

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Love Dalén

Swedish Museum of Natural History

View shared research outputs
Researchain Logo
Decentralizing Knowledge