Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrei Sher is active.

Publication


Featured researches published by Andrei Sher.


Nature | 2011

Species-specific responses of Late Quaternary megafauna to climate and humans

Eline D. Lorenzen; David Nogués-Bravo; Ludovic Orlando; Jaco Weinstock; Jonas Binladen; Katharine A. Marske; Andrew Ugan; Michael K. Borregaard; M. Thomas P. Gilbert; Rasmus Nielsen; Simon Y. W. Ho; Ted Goebel; Kelly E. Graf; David A. Byers; Jesper Stenderup; Morten Rasmussen; Paula F. Campos; Jennifer A. Leonard; Klaus-Peter Koepfli; Duane G. Froese; Grant D. Zazula; Thomas W. Stafford; Kim Aaris-Sørensen; Persaram Batra; Alan M. Haywood; Joy S. Singarayer; Paul J. Valdes; G. G. Boeskorov; James A. Burns; Sergey P. Davydov

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Nature | 2008

Sequencing the nuclear genome of the extinct woolly mammoth

Webb Miller; Daniela I. Drautz; Aakrosh Ratan; Barbara Pusey; Ji Qi; Arthur M. Lesk; Lynn P. Tomsho; Michael Packard; Fangqing Zhao; Andrei Sher; Alexei Tikhonov; Brian J. Raney; Nick Patterson; Kerstin Lindblad-Toh; Eric S. Lander; James Knight; Gerard P. Irzyk; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Tom H. Pringle; Stephan C. Schuster

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5–2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.


Science | 2007

Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts

M. Thomas P. Gilbert; Lynn P. Tomsho; Snjezana Rendulic; Michael Packard; Daniela I. Drautz; Andrei Sher; Alexei Tikhonov; Love Dalén; T. A. Kuznetsova; Pavel A. Kosintsev; Paula F. Campos; Thomas Higham; Matthew J. Collins; Andrew S. Wilson; Fyodor Shidlovskiy; Bernard Buigues; Per G. P. Ericson; Mietje Germonpré; Anders Götherström; Paola Iacumin; V. I. Nikolaev; Malgosia Nowak-Kemp; James Knight; Gerard P. Irzyk; Clotilde S. Perbost; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Webb Miller; Stephan C. Schuster

Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was >50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.


Nature | 2014

Fifty thousand years of Arctic vegetation and megafaunal diet

John Davison; Mari Moora; Martin Zobel; Eric Coissac; Mary E. Edwards; Eline D. Lorenzen; Mette Vestergård; Galina Gussarova; James Haile; Joseph M. Craine; Ludovic Gielly; Sanne Boessenkool; Laura Saskia Epp; Rachid Cheddadi; David W. Murray; Kari Anne Bråthen; Nigel G. Yoccoz; Heather Binney; Corinne Cruaud; Patrick Wincker; Tomasz Goslar; Inger Greve Alsos; Eva Bellemain; Anne K. Brysting; Reidar Elven; J. H. Sønstebø; Julian B. Murton; Andrei Sher; Morten Rasmussen; Regin Rønn

Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics

Paula F. Campos; Andrei Sher; Ludovic Orlando; Erik Axelsson; Alexei Tikhonov; Kim Aaris-Sørensen; Alex D. Greenwood; Ralf-Dietrich Kahlke; Pavel A. Kosintsev; Tatiana Krakhmalnaya; T. A. Kuznetsova; Philippe Lemey; Ross D. E. MacPhee; Christopher A. Norris; Kieran Shepherd; Marc A. Suchard; Grant D. Zazula; Beth Shapiro; M. Thomas P. Gilbert

The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at ≈45,000 radiocarbon years before present (14C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 14C YBP, recontracted at ca. 18,000 14C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.


PLOS Biology | 2005

Evolution, Systematics, and Phylogeography of Pleistocene Horses in the New World: A Molecular Perspective

Jaco Weinstock; Andrei Sher; Wenfei Tong; Simon Y. W. Ho; Daniel I. Rubenstein; John Storer; James A. Burns; Larry D. Martin; Claudio M. Bravi; Alfredo Prieto; Duane G. Froese; Eric Scott; Lai Xulong; Alan Cooper

The rich fossil record of horses has made them a classic example of evolutionary processes. However, while the overall picture of equid evolution is well known, the details are surprisingly poorly understood, especially for the later Pliocene and Pleistocene, c. 3 million to 0.01 million years (Ma) ago, and nowhere more so than in the Americas. There is no consensus on the number of equid species or even the number of lineages that existed in these continents. Likewise, the origin of the endemic South American genus Hippidion is unresolved, as is the phylogenetic position of the “stilt-legged” horses of North America. Using ancient DNA sequences, we show that, in contrast to current models based on morphology and a recent genetic study, Hippidion was phylogenetically close to the caballine (true) horses, with origins considerably more recent than the currently accepted date of c. 10 Ma. Furthermore, we show that stilt-legged horses, commonly regarded as Old World migrants related to the hemionid asses of Asia, were in fact an endemic North American lineage. Finally, our data suggest that there were fewer horse species in late Pleistocene North America than have been named on morphological grounds. Both caballine and stilt-legged lineages may each have comprised a single, wide-ranging species.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

M. Thomas P. Gilbert; Daniela I. Drautz; Arthur M. Lesk; Simon Y. W. Ho; Ji Qi; Aakrosh Ratan; Chih-Hao Hsu; Andrei Sher; Love Dalén; Anders Götherström; Lynn P. Tomsho; Snjezana Rendulic; Michael Packard; Paula F. Campos; Tatyana V. Kuznetsova; Fyodor Shidlovskiy; Alexei Tikhonov; Paola Iacumin; Bernard Buigues; Per G. P. Ericson; Mietje Germonpré; Pavel A. Kosintsev; V. I. Nikolaev; Malgosia Nowak-Kemp; James Knight; Gerard P. Irzyk; Clotilde S. Perbost; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan

We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis of these and 13 recently published mtDNA genomes demonstrates the existence of two apparently sympatric mtDNA clades that exhibit high interclade divergence. The analytical power afforded by the analysis of the complete mtDNA genomes reveals a surprisingly ancient coalescence age of the two clades, ≈1–2 million years, depending on the calibration technique. Furthermore, statistical analysis of the temporal distribution of the 14C ages of these and previously identified members of the two mammoth clades suggests that clade II went extinct before clade I. Modeling of protein structures failed to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep.


Molecular Ecology | 2009

Phylogeography of lions ( Panthera leo ssp.) reveals three distinct taxa and a late Pleistocene reduction in genetic diversity

Ross Barnett; Beth Shapiro; Ian Barnes; Simon Y. W. Ho; Joachim Burger; Nobuyuki Yamaguchi; Thomas Higham; H. Todd Wheeler; Wilfried Rosendahl; Andrei Sher; Marina Sotnikova; Tatiana Kuznetsova; Gennady F. Baryshnikov; Larry D. Martin; C. Richard Harington; James A. Burns; Alan Cooper

Lions were the most widespread carnivores in the late Pleistocene, ranging from southern Africa to the southern USA, but little is known about the evolutionary relationships among these Pleistocene populations or the dynamics that led to their extinction. Using ancient DNA techniques, we obtained mitochondrial sequences from 52 individuals sampled across the present and former range of lions. Phylogenetic analysis revealed three distinct clusters: (i) modern lions, Panthera leo; (ii) extinct Pleistocene cave lions, which formed a homogeneous population extending from Europe across Beringia (Siberia, Alaska and western Canada); and (iii) extinct American lions, which formed a separate population south of the Pleistocene ice sheets. The American lion appears to have become genetically isolated around 340 000 years ago, despite the apparent lack of significant barriers to gene flow with Beringian populations through much of the late Pleistocene. We found potential evidence of a severe population bottleneck in the cave lion during the previous interstadial, sometime after 48 000 years, adding to evidence from bison, mammoths, horses and brown bears that megafaunal populations underwent major genetic alterations throughout the last interstadial, potentially presaging the processes involved in the subsequent end‐Pleistocene mass extinctions.


Current Biology | 2007

Genetic Structure and Extinction of the Woolly Mammoth, Mammuthus primigenius

Ian Barnes; Beth Shapiro; Adrian M. Lister; Tatiana Kuznetsova; Andrei Sher; Dale Guthrie; Mark G. Thomas

The interval since circa 50 Ka has been a period of significant species extinctions among the large mammal fauna. However, the relative roles of an increasing human presence and a synchronous series of complex environmental changes in these extinctions have yet to be fully resolved. Recent analyses of fossil material from Beringia have clarified our understanding of the spatiotemporal pattern of Late Pleistocene extinctions, identifying periods of population turnover well before the last glacial maximum (LGM: circa 21 Ka) or subsequent human expansion. To examine the role of pre-LGM population changes in shaping the genetic structure of an extinct species, we analyzed the mitochondrial DNA of woolly mammoths in western Beringia and across its range. We identify genetic signatures of a range expansion of mammoths, from eastern to western Beringia, after the last interglacial (circa 125 Ka), and then an extended period during which demographic inference indicates no population-size increase. The most marked change in diversity at this time is the loss of one of two major mitochondrial lineages.


PLOS ONE | 2009

Non-Destructive Sampling of Ancient Insect DNA

Philip Francis Thomsen; Scott A. Elias; M. Thomas P. Gilbert; James Haile; Kasper Munch; Svetlana Kuzmina; Duane G. Froese; Andrei Sher; Richard N. Holdaway

Background A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago - an alternative approach that also does not involve destruction of valuable material. Methodology/Principal Findings The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77–204 base pairs (-bp) in size using species-specific and general insect primers. Conclusion/Significance The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity.

Collaboration


Dive into the Andrei Sher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian M. Lister

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexei Tikhonov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Pavel A. Kosintsev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ian Barnes

Natural History Museum

View shared research outputs
Top Co-Authors

Avatar

G. G. Boeskorov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jonas Binladen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Beth Shapiro

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge