Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexei V. Tulin is active.

Publication


Featured researches published by Alexei V. Tulin.


Current Opinion in Genetics & Development | 2010

The roles of PARP1 in gene control and cell differentiation

Yingbiao Ji; Alexei V. Tulin

Cell growth and differentiation during developmental processes require the activation of many inducible genes. However, eukaryotic chromatin, which consists of DNA and histones, becomes a natural barrier impeding access to the functional transcription machinery. To break through the chromatin barrier, eukaryotic organisms have evolved the strategy of using poly(ADP-ribose) polymerase 1 (PARP1) to modulate chromatin structure and initiate the steps leading to gene expression control. As a structural protein in chromatin, enzymatically silent PARP1 inhibits transcription by contributing to the condensation of chromatin, which creates a barrier against gene transcription. However, once activated by environmental stimuli and developmental signals, PARP1 can modify itself and other chromatin-associated proteins, thereby loosening chromatin to facilitate gene transcription. Here we discuss the roles of PARP1 in transcriptional control during development.


PLOS Biology | 2008

The Nucleosome-Remodeling ATPase ISWI is Regulated by poly-ADP-ribosylation.

Anna Sala; Gaspare La Rocca; Giosalba Burgio; Elena Kotova; Dario Di Gesù; Collesano M; Ingrassia A; Alexei V. Tulin; Davide Corona

ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodelers.


Journal of Biological Chemistry | 2007

Nucleosomal Core Histones Mediate Dynamic Regulation of Poly(ADP-ribose) Polymerase 1 Protein Binding to Chromatin and Induction of Its Enzymatic Activity

Aaron D. Pinnola; Natasha Naumova; Meera Shah; Alexei V. Tulin

Poly(ADP-ribose) polymerase 1 protein (PARP1) mediates chromatin loosening and activates the transcription of inducible genes, but the mechanism of PARP1 regulation in chromatin is poorly understood. We have found that PARP1 interaction with chromatin is dynamic and that PARP1 is exchanged continuously between chromatin and nucleoplasm, as well as between chromatin domains. Specifically, the PARP1 protein preferentially interacts with nucleosomal particles, and although the nucleosomal linker DNA is not necessary for this interaction, we have shown that the core histones, H3 and H4, are critical for PARP1 binding. We have also demonstrated that the histones H3 and H4 interact preferentially with the C-terminal portion of PARP1 protein and that the N-terminal domain of PARP1 negatively regulates these interactions. Finally, we have found that interaction with the N-terminal tail of the H4 histone triggers PARP1 enzymatic activity. Therefore, our data collectively suggests a model in which both the regulation of PARP1 protein binding to chromatin and the enzymatic activation of PARP1 protein depend on the dynamics of nucleosomal core histone mediation.


Nucleic Acids Research | 2009

Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing

Yingbiao Ji; Alexei V. Tulin

The biological functions of poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins (hnRNPs) are not well understood. However, it is known that hnRNPs are involved in the regulation of alternative splicing for many genes, including the Ddc gene in Drosophila. Therefore, we first confirmed that poly(ADP-ribose) (pADPr) interacts with two Drosophila hnRNPs, Squid/hrp40 and Hrb98DE/hrp38, and that this function is regulated by Poly(ADP-ribose) Polymerase 1 (PARP1) and Poly(ADP-ribose) Glycohydrolase (PARG) in vivo. These findings then provided a basis for analyzing the role of pADPr binding to these two hnRNPs in terms of alternative splicing regulation. Our results showed that Parg null mutation does cause poly(ADP-ribosyl)ation of Squid and hrp38 protein, as well as their dissociation from active chromatin. Our data also indicated that pADPr binding to hnRNPs inhibits the RNA-binding ability of hnRNPs. Following that, we demonstrated that poly(ADP-ribosyl)ation of Squid and hrp38 proteins inhibits splicing of the intron in the Hsrω-RC transcript, but enhances splicing of the intron in the Ddc pre-mRNA. Taken together, these findings suggest that poly(ADP-ribosyl)ation regulates the interaction between hnRNPs and RNA and thus modulates the splicing pathways.


Genetics | 2005

Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing

Alexei V. Tulin; Natalia M. Naumova; Anunini K. Menon; Allan C. Spradling

Protein ADP ribosylation catalyzed by cellular poly(ADP-ribose) polymerases (PARPs) and tankyrases modulates chromatin structure, telomere elongation, DNA repair, and the transcription of genes involved in stress resistance, hormone responses, and immunity. Using Drosophila genetic tools, we characterize the expression and function of poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme responsible for degrading protein-bound ADP-ribose moieties. Strongly increasing or decreasing PARG levels mimics the effects of Parp mutation, supporting PARGs postulated roles in vivo both in removing ADP-ribose adducts and in facilitating multiple activity cycles by individual PARP molecules. PARP is largely absent from euchromatin in PARG mutants, but accumulates in large nuclear bodies that may be involved in protein recycling. Reducing the level of either PARG or the silencing protein SIR2 weakens copia transcriptional repression. In the absence of PARG, SIR2 is mislocalized and hypermodified. We propose that PARP and PARG promote chromatin silencing at least in part by regulating the localization and function of SIR2 and possibly other nuclear proteins.


PLOS Genetics | 2009

Poly (ADP-Ribose) Polymerase 1 Is Required for Protein Localization to Cajal Body

Elena Kotova; Michael Jarnik; Alexei V. Tulin

Recently, the nuclear protein known as Poly (ADP-ribose) Polymerase1 (PARP1) was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protein itself, by PARP1 automodification, the significance of PARP1 automodification for in vivo processes is not clear. Therefore, we investigated the roles of PARP1 auto ADP-ribosylation in dynamic nuclear processes during development. Specifically, we discovered that PARP1 automodification is required for shuttling key proteins into Cajal body (CB) by protein non-covalent interaction with pADPr in vivo. We hypothesize that PARP1 protein shuttling follows a chain of events whereby, first, most unmodified PARP1 protein molecules bind to chromatin and accumulate in nucleoli, but then, second, upon automodification with poly(ADP-ribose), PARP1 interacts non-covalently with a number of nuclear proteins such that the resulting protein-pADPr complex dissociates from chromatin into CB.


British Journal of Cancer | 2014

Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death

Peter Makhov; Konstantin Golovine; E Teper; Alexander Kutikov; Reza Mehrazin; Anthony T. Corcoran; Alexei V. Tulin; Robert G. Uzzo; Vladimir M. Kolenko

Background:The Akt/mammalian target of rapamycin (mTOR) signalling pathway serves as a critical regulator of cellular growth, proliferation and survival. Akt aberrant activation has been implicated in carcinogenesis and anticancer therapy resistance. Piperlongumine (PL), a natural alkaloid present in the fruit of the Long pepper, is known to exhibit notable anticancer effects. Here we investigate the impact of PL on Akt/mTOR signalling.Methods:We examined Akt/mTOR signalling in cancer cells of various origins including prostate, kidney and breast after PL treatment. Furthermore, cell viability after concomitant treatment with PL and the autophagy inhibitor, Chloroquine (CQ) was assessed. We then examined the efficacy of in vivo combination treatment using a mouse xenograft tumour model.Results:We demonstrate for the first time that PL effectively inhibits phosphorylation of Akt target proteins in all tested cells. Furthermore, the downregulation of Akt downstream signalling resulted in decrease of mTORC1 activity and autophagy stimulation. Using the autophagy inhibitor, CQ, the level of PL-induced cellular death was significantly increased. Moreover, concomitant treatment with PL and CQ demonstrated notable antitumour effect in a xenograft mouse model.Conclusions:Our data provide novel therapeutic opportunities to mediate cancer cellular death using PL. As such, PL may afford a novel paradigm for both prevention and treatment of malignancy.


PLOS Genetics | 2012

Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

Ernest K. Boamah; Elena Kotova; Mikael Garabedian; Michael Jarnik; Alexei V. Tulin

Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Drosophila histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin

Elena Kotova; Niraj Lodhi; Michael Jarnik; Aaron D. Pinnola; Yingbiao Ji; Alexei V. Tulin

According to the histone code hypothesis, histone variants and modified histones provide binding sites for proteins that change the chromatin state to either active or repressed. Here, we identify histone variants that regulate the targeting and enzymatic activity of poly(ADP-ribose) polymerase 1 (PARP1), a chromatin regulator in higher eukaryotes. We demonstrate that PARP1 is targeted to chromatin by association with the histone H2A variant (H2Av)—the Drosophila homolog of the mammalian histone H2A variants H2Az/H2Ax—and that subsequent phosphorylation of H2Av leads to PARP1 activation. This two-step mechanism of PARP1 activation controls transcription at specific loci in a signal-dependent manner. Our study establishes the mechanism through which histone variants and changes in the histone modification code control chromatin-directed PARP1 activity and the transcriptional activation of target genes.


Molecular Aspects of Medicine | 2013

Poly-ADP-ribose polymerase: machinery for nuclear processes.

Colin Thomas; Alexei V. Tulin

It is becoming increasingly clear that the nuclear protein, poly-ADP-ribose polymerase 1 (PARP1), plays essential roles in the cell, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Despite the exciting progress made in understanding the ubiquitous role of poly-ADP-ribose metabolism, a basic mechanism of PARPs activity regulating multiple nuclear processes is yet to be outlined. This review offers a holistic perspective on activity of PARP1, based on empirically observable phenomena. Primary attention is given to mechanisms by which PARP1 regulates a broad range of essential nuclear events, including two complementary processes (1) regulation of protein-nucleic acid interactions by means of protein shuttling and (2) utilizing poly-ADP-ribose as an anionic matrix for trapping, recruiting, and scaffolding proteins.

Collaboration


Dive into the Alexei V. Tulin's collaboration.

Top Co-Authors

Avatar

Elena Kotova

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yingbiao Ji

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niraj Lodhi

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Thomas

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Makhov

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anna Sala

University of Palermo

View shared research outputs
Researchain Logo
Decentralizing Knowledge