Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Kotova is active.

Publication


Featured researches published by Elena Kotova.


PLOS Biology | 2008

The Nucleosome-Remodeling ATPase ISWI is Regulated by poly-ADP-ribosylation.

Anna Sala; Gaspare La Rocca; Giosalba Burgio; Elena Kotova; Dario Di Gesù; Collesano M; Ingrassia A; Alexei V. Tulin; Davide Corona

ATP-dependent nucleosome-remodeling enzymes and covalent modifiers of chromatin set the functional state of chromatin. However, how these enzymatic activities are coordinated in the nucleus is largely unknown. We found that the evolutionary conserved nucleosome-remodeling ATPase ISWI and the poly-ADP-ribose polymerase PARP genetically interact. We present evidence showing that ISWI is target of poly-ADP-ribosylation. Poly-ADP-ribosylation counteracts ISWI function in vitro and in vivo. Our work suggests that ISWI is a physiological target of PARP and that poly-ADP-ribosylation can be a new, important post-translational modification regulating the activity of ATP-dependent nucleosome remodelers.


PLOS Genetics | 2009

Poly (ADP-Ribose) Polymerase 1 Is Required for Protein Localization to Cajal Body

Elena Kotova; Michael Jarnik; Alexei V. Tulin

Recently, the nuclear protein known as Poly (ADP-ribose) Polymerase1 (PARP1) was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protein itself, by PARP1 automodification, the significance of PARP1 automodification for in vivo processes is not clear. Therefore, we investigated the roles of PARP1 auto ADP-ribosylation in dynamic nuclear processes during development. Specifically, we discovered that PARP1 automodification is required for shuttling key proteins into Cajal body (CB) by protein non-covalent interaction with pADPr in vivo. We hypothesize that PARP1 protein shuttling follows a chain of events whereby, first, most unmodified PARP1 protein molecules bind to chromatin and accumulate in nucleoli, but then, second, upon automodification with poly(ADP-ribose), PARP1 interacts non-covalently with a number of nuclear proteins such that the resulting protein-pADPr complex dissociates from chromatin into CB.


PLOS Genetics | 2012

Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

Ernest K. Boamah; Elena Kotova; Mikael Garabedian; Michael Jarnik; Alexei V. Tulin

Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Drosophila histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin

Elena Kotova; Niraj Lodhi; Michael Jarnik; Aaron D. Pinnola; Yingbiao Ji; Alexei V. Tulin

According to the histone code hypothesis, histone variants and modified histones provide binding sites for proteins that change the chromatin state to either active or repressed. Here, we identify histone variants that regulate the targeting and enzymatic activity of poly(ADP-ribose) polymerase 1 (PARP1), a chromatin regulator in higher eukaryotes. We demonstrate that PARP1 is targeted to chromatin by association with the histone H2A variant (H2Av)—the Drosophila homolog of the mammalian histone H2A variants H2Az/H2Ax—and that subsequent phosphorylation of H2Av leads to PARP1 activation. This two-step mechanism of PARP1 activation controls transcription at specific loci in a signal-dependent manner. Our study establishes the mechanism through which histone variants and changes in the histone modification code control chromatin-directed PARP1 activity and the transcriptional activation of target genes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Uncoupling of the transactivation and transrepression functions of PARP1 protein

Elena Kotova; Michael Jarnik; Alexei V. Tulin

Poly(ADP ribose) polymerase 1 (PARP1) is a nuclear protein that regulates chromatin remodeling and transcription as well as DNA repair and genome stability pathways. Recent studies have revealed a paradoxical dual role of PARP1 protein in transcription. Specifically, although PARP1 controls transcriptional activation of a subset of genes that are heat shock- or hormone-dependent, it also directly inactivates transcription, establishes heterochromatin domains, and silences retrotransposable elements. However, the domains required for these disparate functions are currently unknown. In this paper, we report the discovery of a previously undescribed mutation in the Drosophila Parp locus. We show that the mutants express a deletion mutant of PARP1 protein with an altered DNA binding domain that carries only the second Zn-finger. We demonstrate that this alteration specifically excludes PARP1 protein from heterochromatin and makes PARP1 unable to maintain repression of retrotransposable elements. By characterizing the biological activity of this unique PARP1 mutant protein isoform, we have uncoupled the transactivation and transrepression functions of this protein.


Molecular Cell | 2014

Kinase-Mediated Changes in Nucleosome Conformation Trigger Chromatin Decondensation via Poly(ADP-Ribosyl)ation

Colin Thomas; Elena Kotova; Mark Andrake; Jared Adolf-Bryfogle; Robert L. Glaser; Catherine Regnard; Alexei V. Tulin

Dynamically controlled posttranslational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating poly(ADP-ribose) polymerase-1 (PARP-1). JIL-1 phosphorylates the C terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch, consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch, leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1-dependent genes.


Methods of Molecular Biology | 2004

Analysis of Protein-Protein Interactions Utilizing Dual Bait Yeast Two-Hybrid System

Ilya G. Serebriiskii; Elena Kotova

To characterize a proteins function, it is often advantageous to identify other proteins with which it interacts. The yeast two-hybrid system is one of the most versatile methods available for detection and characterization of protein-protein interactions, and in the recent years it has become a mature and robust technology. A further improvement to this technique is the ability to examine and distinguish more than one interaction simultaneously. This is achieved in the Dual Bait, which has successfully been used to detect proteins and peptides that target specific motifs in larger proteins, to facilitate rapid identification of specific interactors from a pool of putative interacting proteins obtained in a library screen, and to score specific drug-mediated disruption of protein-protein interaction.


Methods of Molecular Biology | 2011

Small-molecule collection and high-throughput colorimetric assay to identify PARP1 inhibitors

Elena Kotova; Aaron D. Pinnola; Alexei V. Tulin

During the last few years, poly(ADP-ribose)polymerase (PARP) proteins became a very popular target for anticancer treatment. Many PARP inhibitors have been generated and tested by pharmacological industry. However, most of them were designed to disrupt the DNA-dependent PARP1 protein activation pathway and were based on a competition with NAD for a binding site on PARP molecule and, therefore, on disruption of PARP-mediated enzymatic reaction. This limitation resulted in a discovery of mainly nucleotide-like PARP1 inhibitors which may target not only PARP, but also other pathways involving NAD and other nucleotides. Here, we describe a strategy for the identification of PARP inhibitors that target a different pathway, the histone H4-dependent PARP1 activation. Besides the identification of NAD competitors in a small-molecule collection, this approach allows finding novel classes of PARP inhibitors that specifically disrupt H4-based PARP activation.


EBioMedicine | 2016

Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo.

Colin Thomas; Yingbiao Ji; Niraj Lodhi; Elena Kotova; Aaron D. Pinnola; Konstantin Golovine; Peter Makhov; Kate Pechenkina; Vladimir M. Kolenko; Alexei V. Tulin

The clinical potential of PARP-1 inhibitors has been recognized > 10 years ago, prompting intensive research on their pharmacological application in several branches of medicine, particularly in oncology. However, natural or acquired resistance of tumors to known PARP-1 inhibitors poses a serious problem for their clinical implementation. Present study aims to reignite clinical interest to PARP-1 inhibitors by introducing a new method of identifying highly potent inhibitors and presenting the largest known collection of structurally diverse inhibitors. The majority of PARP-1 inhibitors known to date have been developed as NAD competitors. NAD is utilized by many enzymes other than PARP-1, resulting in a trade-off trap between their specificity and efficacy. To circumvent this problem, we have developed a new strategy to blindly screen a small molecule library for PARP-1 inhibitors by targeting a highly specific rout of its activation. Based on this screen, we present a collection of PARP-1 inhibitors and provide their structural classification. In addition to compounds that show structural similarity to NAD or known PARP-1 inhibitors, the screen identified structurally new non-NAD-like inhibitors that block PARP-1 activity in cancer cells with greater efficacy and potency than classical PARP-1 inhibitors currently used in clinic. These non-NAD-like PARP-1 inhibitors are effective against several types of human cancer xenografts, including kidney, prostate, and breast tumors in vivo. Our pre-clinical testing of these inhibitors using laboratory animals has established a strong foundation for advancing the new inhibitors to clinical trials.


PLOS ONE | 2011

Generating a knockdown transgene against Drosophila heterochromatic Tim17b gene encoding mitochondrial translocase subunit.

Mikael Garabedian; Michael Jarnik; Elena Kotova; Alexei V. Tulin

Heterochromatic regions of eukaryotic genomes contain multiple functional elements involved in chromosomal dynamics, as well as multiple housekeeping genes. Cytological and molecular peculiarities of heterochromatic loci complicate genetic studies based on standard approaches developed using euchromatic genes. Here, we report the development of an RNAi-based knockdown transgenic construct and red fluorescent reporter transgene for a small gene, Tim17b, which localizes in constitutive heterochromatin of Drosophila melanogaster third chromosome and encodes a mitochondrial translocase subunit. We demonstrate that Tim17b protein is required strictly for protein delivery to mitochondrial matrix. Knockdown of Tim17b completely disrupts functions of the mitochondrial translocase complex. Using fluorescent recovery after photobleaching assay, we show that Tim17b protein has a very stable localization in the membranes of the mitochondrial network and that its exchange rate is close to zero when compared with soluble proteins of mitochondrial matrix. These results confirm that we have developed comprehensive tools to study functions of heterochromatic Tim17b gene.

Collaboration


Dive into the Elena Kotova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Thomas

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niraj Lodhi

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge