Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey A. Mikhaylov is active.

Publication


Featured researches published by Alexey A. Mikhaylov.


Journal of Materials Chemistry | 2014

Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes

Petr V. Prikhodchenko; Denis Y. W. Yu; Sudip K. Batabyal; Vladimir Uvarov; Jenny Gun; Sergey Sladkevich; Alexey A. Mikhaylov; Alexander G. Medvedev; Ovadia Lev

A highly stable sodium ion battery anode was prepared by deposition of hydroperoxostannate on graphene oxide from hydrogen-peroxide-rich solution followed by sulfidization and 300 °C heat treatment. The material was characterized by electron microscopy, powder X-ray diffraction and X-ray photoelectron spectroscopy which showed that the active material is mostly rhombohedral SnS2 whose (001) planes were preferentially oriented in parallel to the graphene oxide sheets. The material exhibited >610 mA h g−1 charge capacity at 50 mA g−1 (with >99.6% charging efficiency) between 0 and 2 V vs. Na/Na+ electrode, high cycling stability for over 150 cycles and very good rate performance, >320 mA h g−1 at 2000 mA g−1.


Nanotechnology | 2012

Peroxide induced tin oxide coating of graphene oxide at room temperature and its application for lithium ion batteries

Sergey Sladkevich; Jenny Gun; Petr V. Prikhodchenko; Vitaly Gutkin; Alexey A. Mikhaylov; V. M. Novotortsev; Jianhui Zhu; D. Yang; Huey Hoon Hng; Yee Yan Tay; Z. Tsakadze; Ovadia Lev

We describe a new, simple and low-temperature method for ultra-thin coating of graphene oxide (GO) by peroxostannate, tin oxide or a mixture of tin and tin oxide crystallites by different treatments. The technique is environmentally friendly and does not require complicated infrastructure, an autoclave or a microwave. The supported peroxostannate phase is partially converted after drying to crystalline tin oxide with average, 2.5 nm cassiterite crystals. Mild heat treatment yielded full coverage of the reduced graphene oxide by crystalline tin oxide. Extensive heat treatment in vacuum at >500 °C yielded a mixture of elemental tin and cassiterite tin oxide nanoparticles supported on reduced graphene oxide (rGO). The usefulness of the new approach was demonstrated by the preparation of two types of lithium ion anodes: tin oxide-rGO and a mixture of tin oxide and tin coated rGO composites (SnO(2)-Sn-rGO). The electrodes exhibited stable charge/discharge cyclability and high charging capacity due to the intimate contact between the conductive graphene and the very small tin oxide crystallites. The charging/discharging capacity of the anodes exceeded the theoretical capacity predicted based on tin lithiation. The tin oxide coated rGO exhibited higher charging capacity but somewhat lower stability upon extended charge/discharge cycling compared to SnO(2)-Sn-rGO.


Inorganic Chemistry | 2010

Antimony Tin Oxide (ATO) Nanoparticle Formation from H2O2 Solutions: a New Generic Film Coating from Basic Solutions

Sergey Sladkevich; Alexey A. Mikhaylov; Petr V. Prikhodchenko; Tatiana A. Tripol’skaya; Ovadia Lev

A generic method for conductive film coating of minerals and acid-sensitive materials by antimony-doped tin oxide (ATO) is introduced. The coating was performed from a hydrogen peroxide stabilized stannate and antimonate precursor solution. This is the first demonstration of ATO coating from an organic ligand-free solution. Uniform coating of different clays and other irregular configurations by monosized 5 nm ATO particles was demonstrated. The deposition mechanism and the observed preference for mineral surface coating over homogeneous agglomeration of the tin oxide particles are explained by a hydrogen peroxide capping mechanism and hydrogen bonding of the hydroperoxo nanoparticles to the H(2)O(2)-activated mineral surfaces.


Analytical Chemistry | 2015

Biocomposite Based on Reduced Graphene Oxide Film Modified with Phenothiazone and Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase for Glucose Sensing and Biofuel Cell Applications

Yehonatan Ravenna; Lin Xia; Jenny Gun; Alexey A. Mikhaylov; Alexander G. Medvedev; Ovadia Lev; Lital Alfonta

A novel composite material for the encapsulation of redox enzymes was prepared. Reduced graphene oxide film with adsorbed phenothiazone was used as a highly efficient composite for electron transfer between flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and electrodes. Measured redox potential for glucose oxidation was lower than 0 V vs Ag/AgCl electrode. The fabricated biosensor showed high sensitivity of 42 mA M(-1) cm(-2), a linear range of glucose detection of 0.5-12 mM, and good reproducibility and stability as well as high selectivity for different interfering compounds. In a semibiofuel cell configuration, the hybrid film generated high power output of 345 μW cm(-2). These results demonstrate a promising potential for this composition in various bioelectronic applications.


Journal of Materials Chemistry | 2015

Graphene oxide supported sodium stannate lithium ion battery anodes by the peroxide route: low temperature and no waste processing

Alexey A. Mikhaylov; Alexander G. Medvedev; Chad W. Mason; Arun Nagasubramanian; Srinivasan Madhavi; Sudip K. Batabyal; Qichun Zhang; Jenny Gun; P. V. Prikhodchenko; Ovadia Lev

Since there has been a notable improvement in the performance of graphene-supported tin-based lithium ion battery anodes, they have become a viable alternative to state of the art graphite anodes. However, currently these anodes are produced by energy-demanding thermal processes and generate lithium chloride or other wastes. In this research, we demonstrate the formation of efficient and stable lithium ion battery anodes based on sodium stannate-coated reduced graphene oxide. Coating is performed at low temperatures and when a sodium peroxostannate precursor is used, the process can be carried out with zero waste discharge. Thermal treatment is required only for the solid material. The anode exhibited a charge capacity of 610 mA h g−1 after 140 cycles at 100 mA g−1. This is the first characterization of a sodium stannate-based anode for LIBs.


Inorganic Chemistry | 2015

Potassium, Cesium, and Ammonium Peroxogermanates with Inorganic Hexanuclear Peroxo Bridged Germanium Anion Isolated from Aqueous Solution

Alexander G. Medvedev; Alexey A. Mikhaylov; Andrei V. Churakov; Mikhail V. Vener; Tatiana A. Tripol’skaya; Shmuel Cohen; Ovadia Lev; Petr V. Prikhodchenko

Potassium (K6[Ge6(μ-OO)6(μ-O)6(OH)6]·14H2O, 1), cesium ammonium (Cs4.2(NH4)1.8[Ge6(μ-OO)6(μ-O)6(OH)6]·8H2O, 2), and potassium ammonium (K2.4(NH4)3.6[Ge6(μ-OO)6(μ-O)6(OH)6]·6H2O, 3) peroxogermanates were isolated from 3% hydrogen peroxide aqueous solutions of the corresponding hydroxogermanates and characterized by single crystal and powder X-ray diffraction studies and by Raman spectroscopy and thermal analysis. The crystal structure of all three compounds consists of cations of potassium and/or ammonium and cesium, water molecules, and centrosymmetric hexanuclear peroxogermanate anion [Ge6(μ-OO)6(μ-O)6(OH)6](6-) with six μ-oxo- and six μ-peroxo groups. Peroxogermanates demonstrate relatively high thermal stability: the peroxide remains in the structure even after water release after heating to 100-120 °C. DFT calculations of the peroxogermanate [Ge6(μ-OO)6(μ-O)6(OH)6](6-) anion confirm its higher thermodynamic stability compared to the hydroperoxo- and oxogermanate analogues.


ACS Applied Materials & Interfaces | 2017

GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode

Alexander G. Medvedev; Alexey A. Mikhaylov; Dmitry A. Grishanov; Denis Y. W. Yu; Jenny Gun; Sergey Sladkevich; Ovadia Lev; Petr V. Prikhodchenko

A peroxogermanate thin film was deposited in high yield at room temperature on graphene oxide (GO) from peroxogermanate sols. The deposition of the peroxo-precursor onto GO and the transformations to amorphous GeO2, crystalline tetragonal GeO2, and then to cubic elemental germanium were followed by electron microscopy, XRD, and XPS. All of these transformations are influenced by the GO support. The initial deposition is explained in view of the sol composition and the presence of GO, and the different thermal transformations are explained by reactions with the graphene support acting as a reducing agent. As a test case, the evaluation of the different materials as lithium ion battery anodes was carried out revealing that the best performance is obtained by amorphous germanium oxide@GO with >1000 mAh g-1 at 250 mA g-1 (between 0 and 2.5 V vs Li/Li+ cathode), despite the fact that the material contained only 51 wt % germanium. This is the first demonstration of the peroxide route to produce peroxogermanate thin films and thereby supported germanium and germanium oxide coatings. The advantages of the process over alternative methodologies are discussed.


Main Group Metal Chemistry | 2015

Antimony and antimony oxide@graphene oxide obtained by the peroxide route as anodes for lithium-ion batteries

Denis Y. W. Yu; Sudip K. Batabyal; Jenny Gun; Sergey Sladkevich; Alexey A. Mikhaylov; Alexander G. Medvedev; V. M. Novotortsev; Ovadia Lev; Petr V. Prikhodchenko

Abstract Zero-valent antimony and antimony oxide were deposited on graphene oxide by the recently introduced peroxide deposition route. The antimony@graphene oxide (GO) anode exhibits a charging capacity of 340 mAh g-1 with excellent stability at a current rate of 250 mA g-1 after 50 cycles of lithiation, which is superior to all other forms of antimony anodes that have been reported thus far. The electrode also exhibits a good rate performance, with a capacity of 230 and 180 mAh g-1 at a rate of 500 and 1000 mA g-1, respectively. We attribute the superior performance of the antimony@GO anodes to our coating protocol, which provides a thin layer of nanometric antimony coating on the graphene oxide, and to a small amount of antimony oxide that is left in the anode material after heat treatment and imparts some flexibility. The efficient charge distribution by the large surface area of reduced GO and the expansion buffering of the elastic graphene sheets also contributed to the superior stability of the anode.


Chemistry: A European Journal | 2016

Peroxide Coordination of Tellurium in Aqueous Solutions

Alexey A. Mikhaylov; Alexander G. Medvedev; Andrei V. Churakov; Dmitry A. Grishanov; Petr V. Prikhodchenko; Ovadia Lev

Tellurium-peroxo complexes in aqueous solutions have never been reported. In this work, ammonium peroxotellurates (NH4 )4 Te2 (μ-OO)2 (μ-O)O4 (OH)2 (1) and (NH4 )5 Te2 (μ-OO)2 (μ-O)O5 (OH)⋅1.28 H2 O⋅0.72 H2 O2 (2) were isolated from 5 % hydrogen peroxide aqueous solutions of ammonium tellurate and characterized by single-crystal and powder X-ray diffraction analysis, by Raman spectroscopy and thermal analysis. The crystal structure of 1 comprises ammonium cations and a symmetric binuclear peroxotellurate anion [Te2 (μ-OO)2 (μ-O)O4 (OH)2 ](4-) . The structure of 2 consists of an unsymmetrical [Te2 (μ-OO)2 (μ-O)O5 (OH)](5-) anion, ammonium cations, hydrogen peroxide, and water. Peroxotellurate anions in both 1 and 2 contain a binuclear Te2 (μ-OO)2 (μ-O) fragment with one μ-oxo- and two μ-peroxo bridging groups. (125) Te NMR spectroscopic analysis shows that the peroxo bridged bitellurate anions are the dominant species in solution, with 3-40 %wt H2 O2 and for pH values above 9. DFT calculations of the peroxotellurate anion confirm its higher thermodynamic stability compared with those of the oxotellurate analogues. This is the first direct evidence for tellurium-peroxide coordination in any aqueous system and the first report of inorganic tellurium-peroxo complexes. General features common to all reported p-block element peroxides could be discerned by the characterization of aqueous and crystalline peroxotellurates.


Acta Crystallographica Section C-crystal Structure Communications | 2012

Ammonium and caesium carbonate peroxosolvates: supramolecular networks formed by hydrogen bonds

Alexander G. Medvedev; Alexey A. Mikhaylov; Andrei V. Churakov; Petr V. Prikhodchenko; Ovadia Lev

Diammonium carbonate hydrogen peroxide monosolvate, 2NH(4)(+)·CO(3)(2-)·H(2)O(2), (I), and dicaesium carbonate hydrogen peroxide trisolvate, 2Cs(+)·CO(3)(2-)·3H(2)O(2), (II), were crystallized from 98% hydrogen peroxide. In (I), the carbonate anions and peroxide solvent molecules are arranged on twofold axes. The peroxide molecules act as donors in only two hydrogen bonds with carbonate groups, forming chains along the a and c axes. In the structure of (II), there are three independent Cs(+) ions, two of them residing on twofold axes, as are two of the four peroxide molecules, one of which is disordered. Both structures comprise complicated three-dimensional hydrogen-bonded networks.

Collaboration


Dive into the Alexey A. Mikhaylov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ovadia Lev

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Jenny Gun

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Sergey Sladkevich

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Andrei V. Churakov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. A. Mel’nik

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. M. Novotortsev

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge