Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Koval is active.

Publication


Featured researches published by Alexey Koval.


Biochemical Journal | 2011

Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins

Alexey Koval; Vladimir L. Katanaev

Receptors of the Fz (Frizzled) family initiate Wnt ligand-dependent signalling controlling multiple steps in organism development and carcinogenesis. Fz proteins possess seven transmembrane domains, and their signalling depends on heterotrimeric G-proteins in various organisms; however, Fz proteins constitute a distinct group within the GPCR (G-protein-coupled receptor) superfamily, and Fz signalling can be G-protein-independent in some experimental setups, leading to concerns about the GPCR nature of these proteins. In the present study, we demonstrate that mammalian Fz proteins act as GPCRs on heterotrimeric G(o/i) proteins. Addition of the Wnt3a ligand to rat brain membranes or cultured cells elicits Fz-dependent guanine-nucleotide exchange on G(o/i) proteins. These responses were sensitive to a Wnt antagonist and to pertussis toxin, which decouples the G(o/i) proteins from their receptors through covalent modification. The results of the present study provide the long-awaited biochemical proof of the GPCR nature of Fz receptors.


Biochemical Pharmacology | 2011

Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets.

Alexey Koval; Vladimir Purvanov; Diane Egger-Adam; Vladimir L. Katanaev

The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.


Science Signaling | 2010

A Direct and Functional Interaction Between Go and Rab5 During G Protein–Coupled Receptor Signaling

Vladimir Purvanov; Alexey Koval; Vladimir L. Katanaev

Regulation of a small GTPase by a heterotrimeric G protein determines the outcome of signaling from the receptor Frizzled. Internal Decisions Frizzled (Fz) proteins are receptors that trigger two different types of signaling pathways. The first, canonical signaling, requires that Fz be bound by its ligand Wnt and results in the expression of target genes. The second, planar cell polarity (PCP), regulates cell position in tissues, does not seem to require Wnt, and depends on the subcellular localization of Fz. What drives the “decision” for Fz to trigger canonical rather than PCP signaling is unclear. By examining protein-protein interactions in vitro and in Drosophila wings, Purvanov et al. showed that the heterotrimeric G protein Go, which is downstream of Fz, bound to and activated Rab5, which was required for the endocytosis of Fz. Regulation of the subsequent trafficking of Fz determined the signaling outcome, with interactions of Fz with Rab4 and Rab11, which mediate recycling of Fz and other receptors, disrupting canonical signaling and promoting PCP signaling. Hence, these pathways might be mutually exclusive. Rab5 is a small guanosine triphosphatase (GTPase) that regulates the early stages of endocytosis and is conserved in eukaryotes. Rab5 regulates the internalization of receptors and other membrane-associated signaling proteins. The function of Rab5 in these processes is considered relatively passive, so that the endocytic capacity of Rab5 is used during, for example, β-arrestin–dependent internalization of G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs). Direct recruitment or activation of Rab5 by the components of these signaling pathways has not been reported. Here, we demonstrate an interaction of Drosophila Rab5 and an immediate transducer of GPCR signaling, the G protein Go, in vitro and in vivo. Rab5 and Go bound to each other as purified proteins, as well as in fly extracts. In cellular assays, Go led to Rab5 activation and endosome fusion. We further showed that the Go-Rab5 interaction functioned in Drosophila planar cell polarity and Wingless signal transduction, pathways initiated by GPCRs of the Frizzled (Fz) family. Additionally, the recycling Rab GTPases Rab4 and Rab11 functioned in Fz- and Go-mediated signaling to favor planar cell polarity over canonical Wingless signaling. The interplay between heterotrimeric G proteins and Rab GTPases controlled receptor internalization, revealing a previously uncharacterized regulatory mechanism in GPCR signaling.


Biochemical Pharmacology | 2014

Anti-leprosy drug clofazimine inhibits growth of triple-negative breast cancer cells via inhibition of canonical Wnt signaling.

Alexey Koval; Peter K. Vlasov; P. Shichkova; S. Khunderyakova; Y. Markov; J. Panchenko; A. Volodina; Fyodor A. Kondrashov; Vladimir L. Katanaev

Research on existing drugs often discovers novel mechanisms of their action and leads to the expansion of their therapeutic scope and subsequent remarketing. The Wnt signaling pathway is of the immediate therapeutic relevance, as it plays critical roles in cancer development and progression. However, drugs which disrupt this pathway are unavailable despite the high demand. Here we report an attempt to identify antagonists of the Wnt-FZD interaction among the library of the FDA-approved drugs. We performed an in silico screening which brought up several potential antagonists of the ligand-receptor interaction. 14 of these substances were tested using the TopFlash luciferase reporter assay and four of them identified as active and specific inhibitors of the Wnt3a-induced signaling. However, further analysis through GTP-binding and β-catenin stabilization assays showed that the compounds do not target the Wnt-FZD pair, but inhibit the signaling at downstream levels. We further describe the previously unknown inhibitory activity of an anti-leprosy drug clofazimine in the Wnt pathway and provide data demonstrating its efficiency in suppressing growth of Wnt-dependent triple-negative breast cancer cells. These data provide a basis for further investigations of the efficiency of clofazimine in treatment of Wnt-dependent cancers.


Drug Discovery Today | 2012

Platforms for high-throughput screening of Wnt/Frizzled antagonists

Alexey Koval; Vladimir L. Katanaev

Signaling cascades initiated by Wnt lipoglycoproteins and their receptors of the Frizzled family regulate many aspects of animal development and physiology. Improper activation of this signaling promotes carcinogenic transformation and metastasis. Development of agents blocking the Wnt-Frizzled signaling is of prime interest for drug discovery. Despite certain progress no such agents are as yet brought to the market or even to clinical trials. One reason for these delays might be the use of suboptimal readout assays. In this article we overview existing and developing assay platforms to screen for Wnt-Frizzled antagonists. Among those, G protein-activating assays built on the emerging GPCR properties of Frizzleds are highlighted.


Analytical Biochemistry | 2010

Europium-labeled GTP as a general nonradioactive substitute for [35S]GTPγS in high-throughput G protein studies

Alexey Koval; Damir Kopein; Vladimir Purvanov; Vladimir L. Katanaev

[(35)S]GTPgammaS, the nonhydrolyzable radioactive GTP analog, has been a powerful tool in G protein studies and has set the standards in this field of research. However, its radioactive nature imposes clear limitations to its use in regular laboratory practice and in high-throughput experimentation. The europium-labeled GTP analog (Eu-GTP) has been used as an alternative in the analysis of G protein activation by G protein-coupled receptors in cellular membrane preparations. Here we expand the usage of Eu-GTP and show that it can be applied in other types of assays where [(35)S]GTPgammaS has been previously utilized. We demonstrate the applicability of the modified Eu-GTP binding technology to analysis of heterotrimeric and monomeric G proteins of natural and recombinant sources, from different organisms, in assays with soluble proteins and membrane-containing assays of a high-throughput format. The deci-nanomolar K(D) of Eu-GTP for the tested G proteins is similar to that of other fluorescent-modified GTP analogs, while the sensitivity achieved in time-resolved fluorescence analysis of Eu-GTP exceeds that of the radioactive measurements. Overall, the results of our modified Eu-GTP binding assay present Eu-GTP as a general nonradioactive alternative for G protein studies, especially attractive in high-throughput experiments.


Development | 2014

Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.

Anne Marie Lüchtenborg; Gonzalo P. Solis; Diane Egger-Adam; Alexey Koval; Chen Lin; Maxime G. Blanchard; Stephan Kellenberger; Vladimir L. Katanaev

Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function.


Molecular Cell | 2014

Double Suppression of the Gα Protein Activity by RGS Proteins

Chen Lin; Alexey Koval; Svetlana Tishchenko; A. G. Gabdulkhakov; Uliana Tin; Gonzalo P. Solis; Vladimir L. Katanaev

Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis on G protein α subunits, restricting their activity downstream from G protein-coupled receptors. Here we identify Drosophila Double hit (Dhit) as a dual RGS regulator of Gαo. In addition to the conventional GTPase-activating action, Dhit possesses the guanine nucleotide dissociation inhibitor (GDI) activity, slowing the rate of GTP uptake by Gαo; both activities are mediated by the same RGS domain. These findings are recapitulated using homologous mammalian Gαo/i proteins and RGS19. Crystal structure and mutagenesis studies provide clues into the molecular mechanism for this unprecedented GDI activity. Physiologically, we confirm this activity in Drosophila asymmetric cell divisions and HEK293T cells. We show that the oncogenic Gαo mutant found in breast cancer escapes this GDI regulation. Our studies identify Dhit and its homologs as double-action regulators, inhibiting Gαo/i proteins both through suppression of their activation and acceleration of their inactivation through the single RGS domain.


Biofactors | 2017

Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β‐catenin signaling cascades and reversal of epithelial–mesenchymal transition

S. Shrivastava; Manish Kumar Jeengar; Dinesh Thummuri; Alexey Koval; Vladimir L. Katanaev; Srujan Marepally; V.G.M. Naidu

Cardamonin (CD), an active chalconoid, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of CD for the treatment of triple negative breast cancer (TNBC) is unclear. This study aims to examine the cytotoxic effects of CD and investigate the underlying mechanism in human TNBC cells. The results show that CD exhibits cytotoxicity by inducing apoptosis and cell cycle arrest in TNBC cells via modulation of Bcl-2, Bax, cyt-C, cleaved caspase-3, and PARP. We find that CD significantly increases expression of the epithelial marker E-cadherin, while reciprocally decreasing expression of mesenchymal markers such as snail, slug, and vimentin in BT-549 cells. In parallel with epithelial-mesenchymal transition (EMT) reversal, CD down regulates invasion and migration of BT-549 cells. CD markedly reduces stability and nuclear translocation of β-catenin, accompanied with downregulation of β-catenin target genes. Using the TopFlash luciferase reporter assay, we reveal CD as a specific inhibitor of the Wnt3a-induced signaling. These results suggest the involvement of the Wnt/β-catenin signaling in the CD-induced EMT reversion of BT-549 cells. Notably, CD restores the glycogen synthase kinase-3β (GSK3β) activity, required for β-catenin destruction via the proteasome-mediated system, by inhibiting the phosphorylation of GSK3β by Akt. These occurrences ultimately lead to the blockage of EMT and the invasion of TNBC cells. Further antitumor activity of CD was tested in 4T1 (TNBC cells) induced tumor and it was found that CD significantly inhibited the tumor volume at dose of 5 mg/kg-treated mice.


Cancers | 2016

A second WNT for old drugs: Drug repositioning against WNT-dependent cancers

Kamal Ahmed; Holly V. Shaw; Alexey Koval; Vladimir L. Katanaev

Aberrant WNT signaling underlies cancerous transformation and growth in many tissues, such as the colon, breast, liver, and others. Downregulation of the WNT pathway is a desired mode of development of targeted therapies against these cancers. Despite the urgent need, no WNT signaling-directed drugs currently exist, and only very few candidates have reached early phase clinical trials. Among different strategies to develop WNT-targeting anti-cancer therapies, repositioning of existing drugs previously approved for other diseases is a promising approach. Nonsteroidal anti-inflammatory drugs like aspirin, the anti-leprotic clofazimine, and the anti-trypanosomal suramin are among examples of drugs having recently revealed WNT-targeting activities. In total, 16 human-use drug compounds have been found to be working through the WNT pathway and show promise for their prospective repositioning against various cancers. Advances, hurdles, and prospects of developing these molecules as potential drugs against WNT-dependent cancers, as well as approaches for discovering new ones for repositioning, are the foci of the current review.

Collaboration


Dive into the Alexey Koval's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamal Ahmed

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen Lin

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge