Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Savelyev is active.

Publication


Featured researches published by Alexey Savelyev.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Chemically accurate coarse graining of double-stranded DNA

Alexey Savelyev; Garegin A. Papoian

Coarse-grained (CG) modeling approaches are widely used to simulate many important biological processes involving DNA, including chromatin folding and genomic packaging. The bending propensity of a semiflexible DNA molecule critically influences these processes. However, existing CG DNA models do not retain a sufficient fidelity of the important local chain motions, whose propagation at larger length scales would generate correct DNA persistent lengths, in particular when the solution’s ionic strength is widely varied. Here we report on a development of an accurate CG model for the double-stranded DNA chain, with explicit treatment of mobile ions, derived systematically from all-atom molecular dynamics simulations. Our model generates complex local motions of the DNA chain, similar to fully atomistic dynamics, leading also to a quantitative agreement of our simulation results with the experimental data on the dependence of the DNA persistence length on the solution ionic strength. We also predict a structural transition in a torsionally stressed DNA nanocircle as the buffer ionic strength is increased beyond a threshold value.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2013

Recent successes in coarse-grained modeling of DNA

Davit A. Potoyan; Alexey Savelyev; Garegin A. Papoian

The growing interest in the DNA‐based mesoscale systems of biological and nonbiological nature has encouraged the computational molecular science community to develop coarse‐grained (CG) representationsof the DNA that will be simple enough to permit exhaustive simulations in a reasonable amount of time, yet complex enough to capture the essential physics at play. In the recent years, there have been some major developments in the DNA coarse‐graining area and several fairly sophisticated models are now available that faithfully reproduce key mechanical and chemical properties of the double‐ and single‐stranded DNA. However, there are still many challenges, which limit the applicability of the present models, and much has to be done yet to develop more reliable schemes which would have a predictive power beyond the target domain of the intrinsic parametrization. A development of robust, controllable, and transferrable CG DNA force fields will provide an invaluable tool for gaining physical insights into the molecular nature of complex DNA‐based nanoscale entities such as the chromatin, virus capsids, and DNA nanocomposites. In the present contribution, we provide an overview of the recent developments in the DNA coarse‐graining field. Our aim is to review the existing CG models of the double‐stranded DNA, where a small selection of models, which we believe provide avenues for promising future development, are discussed in some detail.


Journal of the American Chemical Society | 2009

Counterion Atmosphere and Hydration Patterns near a Nucleosome Core Particle

Christopher K. Materese; Alexey Savelyev; Garegin A. Papoian

The chromatin folding problem is an exciting and rich field for modern research. On the most basic level, chromatin fiber consists of a collection of protein-nucleic acid complexes, known as nucleosomes, joined together by segments of linker DNA. Understanding how the cell successfully compacts meters of highly charged DNA into a micrometer size nucleus while still enabling rapid access to the genetic code for transcriptional processes is a challenging goal. In this work we shed light on the way mobile ions condense around the nucleosome core particle, as revealed by an extensive all-atom molecular dynamics simulation. On a hundred nanosecond time scale, the nucleosome exhibited only small conformational fluctuations. We found that nucleosomal DNA is better neutralized by the combination of histone charges and mobile ions compared with free DNA. We provide a detailed physical explanation of this effect using ideas from electrostatics in continuous media. We also discovered that sodium condensation around the histone core is dominated by an experimentally characterized acidic patch, which is thought to play a significant role in chromatin compaction by binding with basic histone tails. Finally, we found that the nucleosome is extensively permeated by over a thousand water molecules, which in turn allows mobile ions to penetrate deeply into the complex. Overall, our work sheds light on the way ionic and hydration interactions within a nucleosome may affect internucleosomal interactions in higher order chromatin fibers.


Journal of the American Chemical Society | 2011

Is DNA's rigidity dominated by electrostatic or nonelectrostatic interactions?

Alexey Savelyev; Christopher K. Materese; Garegin A. Papoian

Double-stranded DNA is among the stiffest biopolymers, whose bending propensity crucially influences many vital biological processes. It is not fully understood which among the two most likely forces, electrostatic self-repulsion or the compressive base pair stacking, plays a dominant role in determining the DNAs unique rigidity. Different theoretical and experimental studies led so far to contradictory results on this issue. In this Communication, we address this important question by means of Molecular Dynamics (MD) simulations using both atomistic and coarse-grained force fields. Using two independent sets of calculations, we found that electrostatic and nonelectrostatic effects play a comparable role in maintaining DNAs stiffness. Our findings substantially differ from predictions of existing theories for DNA rigidity and may indicate that a new conceptual understanding needs to be developed.


Journal of Physical Chemistry B | 2014

Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

Alexey Savelyev; Alexander D. MacKerell

Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drude force field for DNA. The proper balance of these interactions is shown to impact DNA stability and subtler conformational properties, including the conformational equilibrium between the BI and BII states, and the A and B forms of DNA. The parametrization efforts were simultaneously guided by gas-phase quantum mechanics (QM) data on small model compounds and condensed-phase experimental data on the hydration and osmotic properties of biologically relevant ions and their solutions, as well as theoretical predictions for ionic distribution around DNA oligomer. In addition, fine-tuning of the internal base parameters was performed to obtain the final DNA model. Notably, the Drude model is shown to more accurately reproduce counterion condensation theory predictions of DNA charge neutralization by the condensed ions as compared to the CHARMM36 additive DNA force field, indicating an improved physical description of the forces dictating the ionic solvation of DNA due to the explicit treatment of electronic polarizability. In combination with the polarizable DNA force field, the availability of Drude polarizable parameters for proteins, lipids, and carbohydrates will allow for simulation studies of heterogeneous biological systems.


Journal of Physical Chemistry B | 2015

Competition among Li+, Na+, K+, and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations Using the Additive CHARMM36 and Drude Polarizable Force Fields

Alexey Savelyev; Alexander D. MacKerell

In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li(+), Na(+), K(+), and Rb(+), and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions.


Journal of Physical Chemistry Letters | 2015

Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties

Alexey Savelyev; Alexander D. MacKerell

The present report demonstrates that the conformational properties of DNA in solution are sensitive to the type of monovalent ion. Results are based on the ability of a polarizable force field using the classical Drude oscillator to reproduce experimental solution X-ray scattering data more accurately than two nonpolarizable DNA models, AMBER Parmbsc0 and CHARMM36. The polarizable model is then used to calculate scattering profiles of DNA in the presence of four different monovalent salts, LiCl, NaCl, KCl, and RbCl, showing the conformational properties of DNA to vary as a function of ion type, with that effect being sequence-dependent. The primary conformational mode associated with the variations is contraction of the DNA minor groove width with decreasing cation size. These results indicate that the Drude polarizable model provides a more realistic representation of ion–DNA interactions than additive models that may lead to a new level of understanding of the physical mechanisms driving salt-mediated biological processes involving nucleic acids.


Journal of Chemical Theory and Computation | 2015

Differential Deformability of the DNA Minor Groove and Altered BI/BII Backbone Conformational Equilibrium by the Monovalent Ions Li(+), Na(+), K(+), and Rb(+) via Water-Mediated Hydrogen Bonding.

Alexey Savelyev; Alexander D. MacKerell

Recently, we reported the differential impact of the monovalent cations Li(+), Na(+), K(+), and Rb(+) on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width. Because minor groove dimensions vary significantly in protein-DNA complexes and have been shown to play a critical role in both specific and nonspecific DNA readout, understanding the origins of the observed differential DNA modulation by the first-group monovalent ions is of great biological importance. In the present study, we show that the primary microscopic mechanism for the phenomenon is the formation of water-mediated hydrogen bonds between solvated cations located inside the minor groove and simultaneously to two DNA strands, a process whose intensity and impact on DNA structure depends on both the type of ion and the DNA sequence. Additionally, it is shown that the formation of such ion-DNA hydrogen bond complexes appreciably modulates the conformation of the backbone by increasing the population of the BII substate. Notably, the differential impact of the ions on DNA conformational behavior is only predicted by the Drude polarizable model for DNA with virtually no effect observed from MD simulations utilizing the additive CHARMM36 model. Analysis of dipole moments of the water shows the Drude SWM4 model to possess high sensitivity to changes in the local environment, which indicates the important role of electronic polarization in the salt-dependent conformational properties. This also suggests that inclusion of polarization effects is required to model even relatively simple biological systems, such as DNA, in various ionic solutions.


Journal of the American Chemical Society | 2006

Electrostatic, Steric, and Hydration Interactions Favor Na+ Condensation around DNA Compared with K+

Alexey Savelyev; Garegin A. Papoian


Journal of Physical Chemistry B | 2011

Nonequilibrium water transport in a nonionic microemulsion system.

Maria Minakova; Alexey Savelyev; Garegin A. Papoian

Collaboration


Dive into the Alexey Savelyev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher K. Materese

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge