Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher K. Materese is active.

Publication


Featured researches published by Christopher K. Materese.


The Astrophysical Journal | 2014

THE PHOTOCHEMISTRY OF PYRIMIDINE IN REALISTIC ASTROPHYSICAL ICES AND THE PRODUCTION OF NUCLEOBASES

Michel Nuevo; Christopher K. Materese; Scott A. Sandford

Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2 )i n H 2O-rich ice mixtures that contain NH3 ,C H 3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.


The Astrophysical Journal | 2014

ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N2:CH4:CO-CONTAINING ICES

Christopher K. Materese; Dale P. Cruikshank; Scott A. Sandford; Hiroshi Imanaka; Michel Nuevo; Douglas W. White

Radiation processing of the surface ices of outer solar system bodies may result in the production of new chemical species even at low temperatures. Many of the smaller, more volatile molecules that are likely produced by the photolysis of these ices have been well characterized by laboratory experiments. However, the more complex refractory material formed in these experiments remains largely uncharacterized. In this work, we present a series of laboratory experiments in which low-temperature (15–20 K) N2:CH4:CO ices in relative proportions 100:1:1 are subjected to UV irradiation, and the resulting materials are studied with a variety of analytical techniques including infrared spectroscopy, X-ray absorption near-edge structure spectroscopy, gas chromatography coupled with mass spectrometry, and high-resolution mass spectroscopy. Despite the simplicity of the reactants, these experiments result in the production of a highly complex mixture of molecules from relatively low-mass volatiles (tens of daltons) to high-mass refractory materials (hundreds of daltons). These products include various carboxylic acids, nitriles, and urea, which are also expected to be present on the surface of outer solar system bodies, including Pluto and other transneptunian objects. If these compounds occur in sufficient concentrations in the ices of outer solar system bodies, their characteristic bands may be detectable in the near-infrared spectra of these objects.


The Astrophysical Journal | 2015

ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: ELECTRON RADIOLYSIS OF N2-, CH4-, AND CO-CONTAINING ICES

Christopher K. Materese; Dale P. Cruikshank; Scott A. Sandford; Hiroshi Imanaka; Michel Nuevo

Radiation processing of the surface ices of outer Solar System bodies may be an important process for the production of complex chemical species. The refractory materials resulting from radiation processing of known ices are thought to impart to them a red or brown color, as perceived in the visible spectral region. In this work, we analyzed the refractory materials produced from the 1.2-keV electron bombardment of low-temperature N2-, CH4-, and CO-containing ices (100:1:1), which simulates the radiation from the secondary electrons produced by cosmic ray bombardment of the surface ices of Pluto. Despite starting with extremely simple ices dominated by N2, electron irradiation processing results in the production of refractory material with complex oxygen- and nitrogen-bearing organic molecules. These refractory materials were studied at room temperature using multiple analytical techniques including Fourier-transform infrared spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). Infrared spectra of the refractory material suggest the presence of alcohols, carboxylic acids, ketones, aldehydes, amines, and nitriles. XANES spectra of the material indicate the presence of carboxyl groups, amides, urea, and nitriles, and are thus consistent with the IR data. Atomic abundance ratios for the bulk composition of these residues from XANES analysis show that the organic residues are extremely N-rich, having ratios of N/C ~ 0.9 and O/C ~ 0.2. Finally, GC-MS data reveal that the residues contain urea as well as numerous carboxylic acids, some of which are of interest for prebiotic and biological chemistries.


Topics in Current Chemistry | 2014

Photosynthesis and photo-stability of nucleic acids in prebiotic extraterrestrial environments.

Scott A. Sandford; Partha P. Bera; Timothy J. Lee; Christopher K. Materese; Michel Nuevo

Laboratory experiments have shown that the UV photo-irradiation of low-temperature ices of astrophysical interest leads to the formation of organic molecules, including molecules important for biology such as amino acids, quinones, and amphiphiles. When pyrimidine is introduced into these ices, the products of irradiation include the nucleobases uracil, cytosine, and thymine, the informational sub-units of DNA and RNA, as well as some of their isomers. The formation of these compounds, which has been studied both experimentally and theoretically, requires a succession of additions of OH, NH₂, and CH₃groups to pyrimidine. Results show that H₂O ice plays key roles in the formation of the nucleobases, as an oxidant, as a matrix in which reactions can take place, and as a catalyst that assists proton abstraction from intermediate compounds. As H₂O is also the most abundant icy component in most cold astrophysical environments, it probably plays the same roles in space in the formation of biologically relevant compounds. Results also show that although the formation of uracil and cytosine from pyrimidine in ices is fairly straightforward, the formation of thymine is not. This is mostly due to the fact that methylation is a limiting step for its formation, particularly in H₂O-rich ices, where methylation must compete with oxidation. The relative inefficiency of the abiotic formation of thymine to that of uracil and cytosine, together with the fact that thymine has not been detected in meteorites, are not inconsistent with the RNA world hypothesis. Indeed, a lack of abiotically produced thymine delivered to the early Earth may have forced the choice for an RNA world, in which only uracil and cytosine are needed, but not thymine.


The Astrophysical Journal | 2015

N- and O-heterocycles Produced from the Irradiation of Benzene and Naphthalene in H2O/NH3-containing Ices

Christopher K. Materese; Michel Nuevo; Scott A. Sandford

Aromatic heterocyclic molecules are an important class of molecules of astrophysical and biological significance that include pyridine, pyrimidine, and their derivatives. Such compounds are believed to exist in interstellar and circumstellar environments, though they have never been observed in the gas phase. Regardless of their presence in the gas phase in space, numerous heterocycles have been reported in carbonaceous meteorites, which indicates that they are formed under astrophysical conditions. The experimental work described here shows that N- and O-heterocyclic molecules can form from the ultraviolet (UV) irradiation of the homocyclic aromatic molecules benzene (C6H6) or naphthalene (C10H8) mixed in ices containing H2O and NH3. This represents an alternative way to generate aromatic heterocycles to those considered before and may have important implications for astrochemistry and astrobiology.


Journal of Chemical Physics | 2016

Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life

Partha P. Bera; Michel Nuevo; Christopher K. Materese; Scott A. Sandford; Timothy J. Lee

Nucleobases are the carriers of the genetic information in ribonucleic acid and deoxyribonucleic acid (DNA) for all life on Earth. Their presence in meteorites clearly indicates that compounds of biological importance can form via non-biological processes in extraterrestrial environments. Recent experimental studies have shown that the pyrimidine-based nucleobases uracil and cytosine can be easily formed from the ultraviolet irradiation of pyrimidine in H2O-rich ice mixtures that simulate astrophysical processes. In contrast, thymine, which is found only in DNA, is more difficult to form under the same experimental conditions, as its formation usually requires a higher photon dose. Earlier quantum chemical studies confirmed that the reaction pathways were favorable provided that several H2O molecules surrounded the reactants. However, the present quantum chemical study shows that the formation of thymine is limited because of the inefficiency of the methylation of pyrimidine and its oxidized derivatives in an H2O ice, as supported by the laboratory studies. Our results constrain the formation of thymine in astrophysical environments and thus the inventory of organic molecules delivered to the early Earth and have implications for the role of thymine and DNA in the origin of life.


The Astrophysical Journal | 2018

The Photochemistry of Purine in Ice Analogs Relevant to Dense Interstellar Clouds

Christopher K. Materese; Michel Nuevo; Brittiana L. McDowell; Christina E. Buffo; Scott A. Sandford


The Astrophysical Journal | 2017

The Detection of 6.9 μm Emission Features in the Infrared Spectra of IRAS 04296+3429, IRAS 05341+0852, and IRAS 22272+5435: Evidence for the Presence of Hn-PAHs in Post-AGB Stars

Christopher K. Materese; Jesse D. Bregman; Scott A. Sandford


Archive | 2014

Laboratory Investigations of the Complex Refractory Organic Material Produced from Irradiation of Pluto Ice Analogs

Christopher K. Materese; Dale P. Cruikshank; Scott A. Sanford; Hiroshi Imanaka


Proceedings of The International Astronomical Union | 2011

Residual Gas Analysis of Samples Formed from the UV Irradiation of Astrophysical Ice Analogs

Christopher K. Materese; Michel Nuevo; Scott A. Sandford

Collaboration


Dive into the Christopher K. Materese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dale P. Cruikshank

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas W. White

Jacksonville State University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Imanaka

Search for extraterrestrial intelligence

View shared research outputs
Top Co-Authors

Avatar

Jamie E. Elsila

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge