Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Smirnov is active.

Publication


Featured researches published by Alexey Smirnov.


Bioorganic & Medicinal Chemistry | 2013

4-Substituted-2,3,5,6-tetrafluorobenzenesulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII.

Virginija Dudutienė; Asta Zubrienė; Alexey Smirnov; Joana Gylytė; David D. Timm; Elena Manakova; Saulius Gražulis; Daumantas Matulis

A series of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides were synthesized and their binding potencies as inhibitors of recombinant human carbonic anhydrase isozymes I, II, VII, XII, and XIII were determined by the thermal shift assay, isothermal titration calorimetry, and stop-flow CO2 hydration assay. All fluorinated benzenesulfonamides exhibited nanomolar binding potency toward tested CAs and fluorinated benzenesulfonamides posessed higher binding potency than non-fluorinated compounds. The crystal structures of 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide in complex with CA II and CA XII, and 2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide in complex with CA XIII were determined. The observed dissociation constants for several fluorinated compounds reached subnanomolar range for CA I isozyme. The affinity and the selectivity of the compounds towards tested isozymes are presented.


Journal of Medicinal Chemistry | 2014

Discovery and characterization of novel selective inhibitors of carbonic anhydrase IX.

Virginija Dudutiene; Jurgita Matuliene; Alexey Smirnov; David D. Timm; Asta Zubriene; Lina Baranauskiene; Vaida Morkunaite; Joana Smirnoviene; Vilma Michailoviene; Vaida Juozapaitiene; Aurelija Mickevičiute; Justina Kazokaite; Sandra Bakšyte; Aiste Kasiliauskaite; Jelena Jachno; Jurgita Revuckiene; Migle Kišonaite; Vilma Pilipuityte; Egle Ivanauskaite; Goda Milinavičiute; Vytautas Smirnovas; Vilma Petrikaite; Visvaldas Kairys; V. Petrauskas; Povilas Norvaišas; Darius Linge; Paulius Gibieža; Edita Čapkauskaite; Audrius Zakšauskas; Egidijus Kazlauskas

Human carbonic anhydrase IX (CA IX) is highly expressed in tumor tissues, and its selective inhibition provides a potential target for the treatment of numerous cancers. Development of potent, highly selective inhibitors against this target remains an unmet need in anticancer therapeutics. A series of fluorinated benzenesulfonamides with substituents on the benzene ring was designed and synthesized. Several of these exhibited a highly potent and selective inhibition profile against CA IX. Three fluorine atoms significantly increased the affinity by withdrawing electrons and lowering the pKa of the benzenesulfonamide group. The bulky ortho substituents, such as cyclooctyl or even cyclododecyl groups, fit into the hydrophobic pocket in the active site of CA IX but not CA II, as shown by the compounds co-crystal structure with chimeric CA IX. The strongest inhibitor of recombinant human CA IXs catalytic domain in human cells achieved an affinity of 50 pM. However, the high affinity diminished the selectivity. The most selective compound for CA IX exhibited 10 nM affinity. The compound that showed the best balance between affinity and selectivity bound with 1 nM affinity. The inhibitors described in this work provide the basis for novel anticancer therapeutics targeting CA IX.


Bioorganic & Medicinal Chemistry | 2013

Benzenesulfonamides with pyrimidine moiety as inhibitors of human carbonic anhydrases I, II, VI, VII, XII, and XIII.

Edita Čapkauskaitė; Asta Zubrienė; Alexey Smirnov; Jolanta Torresan; Miglė Kišonaitė; Justina Kazokaitė; Joana Gylytė; Vilma Michailovienė; Vaida Jogaitė; Elena Manakova; Saulius Gražulis; Sigitas Tumkevicius; Daumantas Matulis

Two groups of benzenesulfonamide derivatives, bearing pyrimidine moieties, were designed and synthesized as inhibitors of carbonic anhydrases (CA). Their binding affinities to six recombinant human CA isoforms I, II, VI, VII, XII, and XIII were determined by the thermal shift assay (TSA). The binding of several inhibitors was measured by isothermal titration calorimetry (ITC). Direct demonstration of compound inhibition was achieved by determining the inhibition constant by stopped-flow CO2 hydration assay. The most potent compounds demonstrated selectivity towards isoform I and affinities of 0.5 nM. The crystal structures of selected compounds in complex with CA II, XII, and XIII were determined to atomic resolution. Compounds described here were compared with previously published pyrimidinebenzenesulfonamides.(1) Systematic structure-activity analysis of 40 compound interactions with six isoforms yields clues for the design of compounds with greater affinities and selectivities towards target CA isoforms.


Biophysical Chemistry | 2015

Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.

Asta Zubrienė; Joana Smirnovienė; Alexey Smirnov; Vaida Morkūnaitė; Vilma Michailovienė; Jelena Jachno; Vaida Juozapaitienė; Povilas Norvaišas; Elena Manakova; Saulius Gražulis; Daumantas Matulis

Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.


ChemMedChem | 2015

Functionalization of Fluorinated Benzenesulfonamides and Their Inhibitory Properties toward Carbonic Anhydrases

Virginija Dudutienė; Asta Zubrienė; Alexey Smirnov; David D. Timm; Joana Smirnovienė; Justina Kazokaitė; Vilma Michailovienė; Audrius Zakšauskas; Elena Manakova; Saulius Gražulis; Daumantas Matulis

Substituted tri‐ and tetrafluorobenzenesulfonamides were designed, synthesized, and evaluated as high‐affinity and isoform‐selective carbonic anhydrase (CA) inhibitors. Their binding affinities for recombinant human CA I, II, VA, VI, VII, XII, and XIII catalytic domains were determined by fluorescent thermal shift assay, isothermal titration calorimetry, and a stopped‐flow CO2 hydration assay. Variation of the substituents at the 2‐, 3‐, and 4‐positions yielded compounds with a broad range of binding affinities and isoform selectivities. Several 2,4‐substituted‐3,5,6‐trifluorobenzenesulfonamides were effective CA XIII inhibitors with high selectivity over off‐target CA I and CA II. 3,4‐Disubstituted‐2,5,6‐trifluorobenzenesulfonamides bound CAs with higher affinity than 2,4‐disubstituted‐3,5,6‐trifluorobenzenesulfonamides. Many such fluorinated benzenesulfonamides were found to be nanomolar inhibitors of CA II, CA VII, tumor‐associated CA IX and CA XII, and CA XIII. X‐ray crystal structures of inhibitors bound in the active sites of several CA isoforms provide structure–activity relationship information for inhibitor binding affinities and selectivity.


PLOS ONE | 2014

Intrinsic Thermodynamics and Structure Correlation of Benzenesulfonamides with a Pyrimidine Moiety Binding to Carbonic Anhydrases I, II, VII, XII, and XIII

Miglė Kišonaitė; Asta Zubrienė; Edita Čapkauskaitė; Alexey Smirnov; Joana Smirnovienė; Visvaldas Kairys; Vilma Michailovienė; Elena Manakova; Saulius Gražulis; Daumantas Matulis

The early stage of drug discovery is often based on selecting the highest affinity lead compound. To this end the structural and energetic characterization of the binding reaction is important. The binding energetics can be resolved into enthalpic and entropic contributions to the binding Gibbs free energy. Most compound binding reactions are coupled to the absorption or release of protons by the protein or the compound. A distinction between the observed and intrinsic parameters of the binding energetics requires the dissection of the protonation/deprotonation processes. Since only the intrinsic parameters can be correlated with molecular structural perturbations associated with complex formation, it is these parameters that are required for rational drug design. Carbonic anhydrase (CA) isoforms are important therapeutic targets to treat a range of disorders including glaucoma, obesity, epilepsy, and cancer. For effective treatment isoform-specific inhibitors are needed. In this work we investigated the binding and protonation energetics of sixteen [(2-pyrimidinylthio)acetyl]benzenesulfonamide CA inhibitors using isothermal titration calorimetry and fluorescent thermal shift assay. The compounds were built by combining four sulfonamide headgroups with four tailgroups yielding 16 compounds. Their intrinsic binding thermodynamics showed the limitations of the functional group energetic additivity approach used in fragment-based drug design, especially at the level of enthalpies and entropies of binding. Combined with high resolution crystal structural data correlations were drawn between the chemical functional groups on selected inhibitors and intrinsic thermodynamic parameters of CA-inhibitor complex formation.


Molecules | 2014

4-Amino-substituted Benzenesulfonamides as Inhibitors of Human Carbonic Anhydrases

Kęstutis Rutkauskas; Asta Zubrienė; Ingrida Tumosienė; Kristina Kantminienė; Marytė Kažemėkaitė; Alexey Smirnov; Justina Kazokaitė; Vaida Morkūnaitė; Edita Čapkauskaitė; Elena Manakova; Saulius Gražulis; Zigmuntas Jonas Beresnevičius; Daumantas Matulis

A series of N-aryl-β-alanine derivatives and diazobenzenesulfonamides containing aliphatic rings were designed, synthesized, and their binding to carbonic anhydrases (CA) I, II, VI, VII, XII, and XIII was studied by the fluorescent thermal shift assay and isothermal titration calorimetry. The results showed that 4-substituted diazobenzenesulfonamides were more potent CA binders than N-aryl-β-alanine derivatives. Most of the N-aryl-β-alanine derivatives showed better affinity for CA II while diazobenzenesulfonamides possessed nanomolar affinities towards CA I isozyme. X-ray crystallographic structures showed the modes of binding of both compound groups.


ChemMedChem | 2017

Intrinsic Thermodynamics and Structures of 2,4- and 3,4-Substituted Fluorinated Benzenesulfonamides Binding to Carbonic Anhydrases.

Asta Zubrienė; Alexey Smirnov; Virginija Dudutienė; David D. Timm; Jurgita Matulienė; Vilma Michailovienė; Audrius Zakšauskas; Elena Manakova; Saulius Gražulis; Daumantas Matulis

The goal of rational drug design is to understand structure–thermodynamics correlations in order to predict the chemical structure of a drug that would exhibit excellent affinity and selectivity for a target protein. In this study we explored the contribution of added functionalities of benzenesulfonamide inhibitors to the intrinsic binding affinity, enthalpy, and entropy for recombinant human carbonic anhydrases (CA) CA I, CA II, CA VII, CA IX, CA XII, and CA XIII. The binding enthalpies of compounds possessing similar chemical structures and affinities were found to be very different, spanning a range from −90 to +10 kJ mol−1, and are compensated by a similar opposing entropy contribution. The intrinsic parameters of binding were determined by subtracting the linked protonation reactions. The sulfonamide group pKa values of the compounds were measured spectrophotometrically, and the protonation enthalpies were measured by isothermal titration calorimetry (ITC). Herein we describe the development of meta‐ or ortho‐substituted fluorinated benzenesulfonamides toward the highly potent compound 10 h, which exhibits an observed dissociation constant value of 43 pm and an intrinsic dissociation constant value of 1.1 pm toward CA IX, an anticancer target that is highly overexpressed in various tumors. Fluorescence thermal shift assays, ITC, and X‐ray crystallography were all applied in this work.


PeerJ | 2018

Crystal structure correlations with the intrinsic thermodynamics of human carbonic anhydrase inhibitor binding.

Alexey Smirnov; Asta Zubriene; Elena Manakova; Saulius Grazulis; Daumantas Matulis

The structure-thermodynamics correlation analysis was performed for a series of fluorine- and chlorine-substituted benzenesulfonamide inhibitors binding to several human carbonic anhydrase (CA) isoforms. The total of 24 crystal structures of 16 inhibitors bound to isoforms CA I, CA II, CA XII, and CA XIII provided the structural information of selective recognition between a compound and CA isoform. The binding thermodynamics of all structures was determined by the analysis of binding-linked protonation events, yielding the intrinsic parameters, i.e., the enthalpy, entropy, and Gibbs energy of binding. Inhibitor binding was compared within structurally similar pairs that differ by para- or meta-substituents enabling to obtain the contributing energies of ligand fragments. The pairs were divided into two groups. First, similar binders—the pairs that keep the same orientation of the benzene ring exhibited classical hydrophobic effect, a less exothermic enthalpy and a more favorable entropy upon addition of the hydrophobic fragments. Second, dissimilar binders—the pairs of binders that demonstrated altered positions of the benzene rings exhibited the non-classical hydrophobic effect, a more favorable enthalpy and variable entropy contribution. A deeper understanding of the energies contributing to the protein-ligand recognition should lead toward the eventual goal of rational drug design where chemical structures of ligands could be designed based on the target protein structure.


European Journal of Medicinal Chemistry | 2018

Design of two-tail compounds with rotationally fixed benzenesulfonamide ring as inhibitors of carbonic anhydrases

Audrius Zakšauskas; Edita Čapkauskaitė; Linas Jezepčikas; Vaida Linkuvienė; Miglė Kišonaitė; Alexey Smirnov; Elena Manakova; Saulius Gražulis; Daumantas Matulis

Rational design of compounds that would bind specific pockets of the target proteins is a difficult task in drug design. The 12 isoforms of catalytically active human carbonic anhydrases (CAs) have highly similar active sites that make it difficult to design inhibitors selective for one or several CA isoforms. A series of CA inhibitors based on 2-chloro/bromo-benzenesulfonamide that is largely fixed in the CA active site together with one or two tails yielded compounds that were synthesized and evaluated as inhibitors of CA isoforms. Introduction of a second tail had significant influence on the binding affinity and two-tailed compounds in most cases provided high affinity and selectivity for CA IX and CA XIV. The contacts between several compounds and CA amino acids were determined by X-ray crystallography. Together with the intrinsic enthalpy and entropy of binding they provided the structure-thermodynamics correlations for this series of compounds with the insight how to rationally build compounds with desired CA isoform as a target.

Collaboration


Dive into the Alexey Smirnov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge