Asta Zubrienė
Vilnius University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Asta Zubrienė.
International Journal of Molecular Sciences | 2009
Asta Zubrienė; Jurgita Matulienė; Lina Baranauskienė; Jelena Jachno; Jolanta Torresan; Vilma Michailovienė; Piotras Cimmperman; Daumantas Matulis
The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90αN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90αN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding.
Bioorganic & Medicinal Chemistry | 2013
Vaida Jogaitė; Asta Zubrienė; Vilma Michailovienė; Joana Gylytė; Vaida Morkūnaitė; Daumantas Matulis
Human carbonic anhydrase isozyme XII is a transmembrane protein that is overexpressed in many human cancers. Therefore CA XII is an anticancer drug target. However, there are few compounds that specifically target CA XII. The design of specific inhibitors against CA XII relies on the detailed understanding of the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. To characterize the thermodynamic parameters of the binding of known sulfonamides, namely ethoxzolamide, acetazolamide and trifluoromethanesulfonamide, we used isothermal titration calorimetry and fluorescent thermal shift assay. The binding of these sulfonamides to CA XII was buffer and pH-dependent. Dissection of protonation-deprotonation reactions of both the water molecule bound to the CA XII active site and the sulfonamide group of the inhibitor yielded the intrinsic thermodynamic parameters of binding, such as binding enthalpy, entropy and Gibbs free energy. Thermal shift assay was also used to determine CA XII stabilities at various pH and in the presence of buffers and salts.
Bioorganic & Medicinal Chemistry | 2013
Virginija Dudutienė; Asta Zubrienė; Alexey Smirnov; Joana Gylytė; David D. Timm; Elena Manakova; Saulius Gražulis; Daumantas Matulis
A series of 4-substituted-2,3,5,6-tetrafluorobenezenesulfonamides were synthesized and their binding potencies as inhibitors of recombinant human carbonic anhydrase isozymes I, II, VII, XII, and XIII were determined by the thermal shift assay, isothermal titration calorimetry, and stop-flow CO2 hydration assay. All fluorinated benzenesulfonamides exhibited nanomolar binding potency toward tested CAs and fluorinated benzenesulfonamides posessed higher binding potency than non-fluorinated compounds. The crystal structures of 4-[(4,6-dimethylpyrimidin-2-yl)thio]-2,3,5,6-tetrafluorobenzenesulfonamide in complex with CA II and CA XII, and 2,3,5,6-tetrafluoro-4-[(2-hydroxyethyl)sulfonyl]benzenesulfonamide in complex with CA XIII were determined. The observed dissociation constants for several fluorinated compounds reached subnanomolar range for CA I isozyme. The affinity and the selectivity of the compounds towards tested isozymes are presented.
Bioorganic & Medicinal Chemistry | 2013
Edita Čapkauskaitė; Asta Zubrienė; Alexey Smirnov; Jolanta Torresan; Miglė Kišonaitė; Justina Kazokaitė; Joana Gylytė; Vilma Michailovienė; Vaida Jogaitė; Elena Manakova; Saulius Gražulis; Sigitas Tumkevicius; Daumantas Matulis
Two groups of benzenesulfonamide derivatives, bearing pyrimidine moieties, were designed and synthesized as inhibitors of carbonic anhydrases (CA). Their binding affinities to six recombinant human CA isoforms I, II, VI, VII, XII, and XIII were determined by the thermal shift assay (TSA). The binding of several inhibitors was measured by isothermal titration calorimetry (ITC). Direct demonstration of compound inhibition was achieved by determining the inhibition constant by stopped-flow CO2 hydration assay. The most potent compounds demonstrated selectivity towards isoform I and affinities of 0.5 nM. The crystal structures of selected compounds in complex with CA II, XII, and XIII were determined to atomic resolution. Compounds described here were compared with previously published pyrimidinebenzenesulfonamides.(1) Systematic structure-activity analysis of 40 compound interactions with six isoforms yields clues for the design of compounds with greater affinities and selectivities towards target CA isoforms.
European Journal of Medicinal Chemistry | 2012
Edita Čapkauskaitė; Asta Zubrienė; Lina Baranauskienė; Giedrė Tamulaitienė; Elena Manakova; Visvaldas Kairys; Saulius Gražulis; Sigitas Tumkevicius; Daumantas Matulis
A series of [(2-pyrimidinylthio)acetyl]benzenesulfonamides were designed and synthesized. Their binding affinities as inhibitors of several recombinant human carbonic anhydrase (CA) isozymes were determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). A group of compounds containing a chlorine atom in the benzenesulfonamide ring were found to exhibit higher selectivity but lower binding affinity toward tested CAs. The crystal structures of selected compounds in complex with CA II were determined to atomic resolution. Docking studies were performed to compare the binding modes of experimentally determined crystallographic structures with computational prediction of the pyrimidine derivative binding to CA II. Several compounds bound to select CAs with single-digit nanomolar affinities and could be used as leads for inhibitor development toward a select CA isozyme.
Biophysical Chemistry | 2015
Asta Zubrienė; Joana Smirnovienė; Alexey Smirnov; Vaida Morkūnaitė; Vilma Michailovienė; Jelena Jachno; Vaida Juozapaitienė; Povilas Norvaišas; Elena Manakova; Saulius Gražulis; Daumantas Matulis
Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.
ChemMedChem | 2015
Virginija Dudutienė; Asta Zubrienė; Alexey Smirnov; David D. Timm; Joana Smirnovienė; Justina Kazokaitė; Vilma Michailovienė; Audrius Zakšauskas; Elena Manakova; Saulius Gražulis; Daumantas Matulis
Substituted tri‐ and tetrafluorobenzenesulfonamides were designed, synthesized, and evaluated as high‐affinity and isoform‐selective carbonic anhydrase (CA) inhibitors. Their binding affinities for recombinant human CA I, II, VA, VI, VII, XII, and XIII catalytic domains were determined by fluorescent thermal shift assay, isothermal titration calorimetry, and a stopped‐flow CO2 hydration assay. Variation of the substituents at the 2‐, 3‐, and 4‐positions yielded compounds with a broad range of binding affinities and isoform selectivities. Several 2,4‐substituted‐3,5,6‐trifluorobenzenesulfonamides were effective CA XIII inhibitors with high selectivity over off‐target CA I and CA II. 3,4‐Disubstituted‐2,5,6‐trifluorobenzenesulfonamides bound CAs with higher affinity than 2,4‐disubstituted‐3,5,6‐trifluorobenzenesulfonamides. Many such fluorinated benzenesulfonamides were found to be nanomolar inhibitors of CA II, CA VII, tumor‐associated CA IX and CA XII, and CA XIII. X‐ray crystal structures of inhibitors bound in the active sites of several CA isoforms provide structure–activity relationship information for inhibitor binding affinities and selectivity.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2015
Vaida Morkūnaitė; Joana Gylytė; Asta Zubrienė; Lina Baranauskienė; Miglė Kišonaitė; Vilma Michailovienė; Vaida Juozapaitienė; Matthew J. Todd; Daumantas Matulis
Abstract Human carbonic anhydrase (CA) I and II are cytosolic proteins, where their expression disorders can cause diseases such as glaucoma, edema, epilepsy or cancer. There are numerous inhibitors that target these isozymes, but it is difficult to design compounds that could bind to one of these proteins specifically. The binding of sulfonamide inhibitor to a CA is linked to several protonation reactions, namely, deprotonation of the sulfonamide group, protonation of the active site zinc hydroxide and the compensating protonation–deprotonation of buffer. By performing binding experiments at various pHs and buffers, all those contributions were dissected and the “intrinsic” binding parameters were calculated. Intrinsic thermodynamic binding parameters to CA I and II were determined for such widely studied drugs as acetazolamide, ethoxzolamide, methazolamide, trifluoromethanesulfonamide and dichlorophenamide. The assignment of all contributions should enhance our understanding of the underlying energetics and increase our capability to design more potent and specific CA inhibitors.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2014
Asta Zubrienė; Edita Čapkauskaitė; Joana Gylytė; Miglė Kišonaitė; Sigitas Tumkevicius; Daumantas Matulis
Abstract A series of benzenesulfonamide derivatives, bearing benzimidazole moieties, were designed and synthesized as inhibitors of carbonic anhydrases (CAs). Their binding affinities to recombinant human CA isozymes I, II, VII, XII and XIII were determined by the thermal shift assay. A group of compounds containing a benzimidazole substituent in the para position of the benzenesulfonamide ring was found to exhibit higher binding potency toward tested CAs than meta-substituted benzenesulfonamides. Some of these compounds exhibited nanomolar affinities and selectivity toward the CA isozymes tested.
Biophysical Chemistry | 2010
Asta Zubrienė; Malgorzata Gutkowska; Jurgita Matulienė; Romanas Chaleckis; Vilma Michailovienė; Aliona Voroncova; Česlovas Venclovas; Alicja Zylicz; Maciej Zylicz; Daumantas Matulis
Radicicol is a natural antibiotic that specifically inhibits chaperone Hsp90 activity and binds to its active site with nanomolar affinity. Radicicol has been widely used as a lead compound to generate synthetic analogs with reduced toxicity and increased stability that could be employed clinically. Here we present a detailed thermodynamic description of radicicol binding to human Hsp90 and yeast Hsc82 studied by isothermal titration calorimetry and thermal shift assay. Titrations as a function of pH showed a linked protonation event upon radicicol binding. The intrinsic binding constant and the thermodynamic parameters (including the enthalpy, entropy, and heat capacity) were determined for yeast Hsc82, and human alpha and beta Hsp90. Recent experimental evidence in literature shows that yeast Hsc82 has significant differences from human Hsp90 isozymes. Here we support this by demonstrating differences in radicicol binding thermodynamics to these proteins. The intrinsic enthalpy of radicicol binding to Hsc82 was -46.7 kJ/mol, to Hsp90alpha -70.7 kJ/mol, and to Hsp90beta was -66.8 kJ/mol. The enthalpies of binding were significantly different, while the intrinsic dissociation constants were quite similar, equal to 0.25, 0.04, and 0.15 nM, respectively. The structural features responsible for such large difference in binding enthalpy but small difference in the intrinsic binding Gibbs free energy are discussed.