Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey V. Fedorov is active.

Publication


Featured researches published by Alexey V. Fedorov.


Bulletin of the American Meteorological Society | 2009

UNDERSTANDING EL NIÑO IN OCEAN-ATMOSPHERE GENERAL CIRCULATION MODELS Progress and Challenges

Eric Guilyardi; Andrew T. Wittenberg; Alexey V. Fedorov; Matthew D. Collins; Chunzai Wang; Geert Jan van Oldenborgh; Tim Stockdale

Determining how El Nino and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean-atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Nino mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Nino as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Nino indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Nino, is presented.


Science | 2006

The Pliocene Paradox (Mechanisms for a Permanent El Niño)

Alexey V. Fedorov; P. S. Dekens; Matthew D. McCarthy; Ana Christina Ravelo; Peter B. deMenocal; Marcelo Barreiro; R. C. Pacanowski; S. G. H. Philander

During the early Pliocene, 5 to 3 million years ago, globally averaged temperatures were substantially higher than they are today, even though the external factors that determine climate were essentially the same. In the tropics, El Niño was continual (or “permanent”) rather than intermittent. The appearance of northern continental glaciers, and of cold surface waters in oceanic upwelling zones in low latitudes (both coastal and equatorial), signaled the termination of those warm climate conditions and the end of permanent El Niño. This led to the amplification of obliquity (but not precession) cycles in equatorial sea surface temperatures and in global ice volume, with the former leading the latter by several thousand years. A possible explanation is that the gradual shoaling of the oceanic thermocline reached a threshold around 3 million years ago, when the winds started bringing cold waters to the surface in low latitudes. This introduced feedbacks involving ocean-atmosphere interactions that, along with ice-albedo feedbacks, amplified obliquity cycles. A future melting of glaciers, changes in the hydrological cycle, and a deepening of the thermocline could restore the warm conditions of the early Pliocene.


Journal of Climate | 2001

A Stability Analysis of Tropical Ocean–Atmosphere Interactions: Bridging Measurements and Theory for El Niño

Alexey V. Fedorov; S. George Philander

Abstract Interactions between the tropical oceans and atmosphere permit a spectrum of natural modes of oscillation whose properties—period, intensity, spatial structure, and direction of propagation—depend on the background climatic state (i.e., the mean state). This mean state can be described by parameters that include the following: the time-averaged intensity τ of the Pacific trade winds, the mean depth (H) of the thermocline, and the temperature difference across the thermocline (ΔT). A stability analysis by means of a simple coupled ocean–atmosphere model indicates two distinct families of unstable modes. One has long periods of several years, involves sea surface temperature variations determined by vertical movements of the thermocline that are part of the adjustment of the ocean basin to the fluctuating winds, requires a relatively deep thermocline, and corresponds to the delayed oscillator. The other family requires a shallow thermocline, has short periods of a year or two, has sea surface tempe...


Science | 2009

Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene

Chris M. Brierley; Alexey V. Fedorov; Zhonghui Liu; Timothy D. Herbert; Kira T. Lawrence; Jonathan P. LaRiviere

The Pliocene warm interval has been difficult to explain. We reconstructed the latitudinal distribution of sea surface temperature around 4 million years ago, during the early Pliocene. Our reconstruction shows that the meridional temperature gradient between the equator and subtropics was greatly reduced, implying a vast poleward expansion of the ocean tropical warm pool. Corroborating evidence indicates that the Pacific temperature contrast between the equator and 32°N has evolved from ∼2°C 4 million years ago to ∼8°C today. The meridional warm pool expansion evidently had enormous impacts on the Pliocene climate, including a slowdown of the atmospheric Hadley circulation and El Niño–like conditions in the equatorial region. Ultimately, sustaining a climate state with weak tropical sea surface temperature gradients may require additional mechanisms of ocean heat uptake (such as enhanced ocean vertical mixing).


Paleoceanography | 2003

Role of tropics in changing the response to Milankovich forcing some three million years ago

S. George Philander; Alexey V. Fedorov

appeared in regions that today have intense oceanic upwelling: the eastern equatorial Pacific and the coastal zones of southwestern Africa and California. There was furthermore a significant change in the Earth’s response to Milankovich forcing: obliquity signals became large, but those associated with precession and eccentricity remained the same. The latter change in the Earth’s response can be explained by hypothesizing that the global cooling during the Cenozoic affected the thermal structure of the ocean; it caused a gradual shoaling of the thermocline. Around 3 Ma the thermocline was sufficiently shallow for the winds to bring cold water from below the thermocline to the surface in certain upwelling regions. This brought into play feedbacks involving


Nature | 2013

Patterns and mechanisms of early Pliocene warmth

Alexey V. Fedorov; Chris M. Brierley; Kira T. Lawrence; Zhonghui Liu; P. S. Dekens; Ana Christina Ravelo

About five to four million years ago, in the early Pliocene epoch, Earth had a warm, temperate climate. The gradual cooling that followed led to the establishment of modern temperature patterns, possibly in response to a decrease in atmospheric CO2 concentration, of the order of 100 parts per million, towards preindustrial values. Here we synthesize the available geochemical proxy records of sea surface temperature and show that, compared with that of today, the early Pliocene climate had substantially lower meridional and zonal temperature gradients but similar maximum ocean temperatures. Using an Earth system model, we show that none of the mechanisms currently proposed to explain Pliocene warmth can simultaneously reproduce all three crucial features. We suggest that a combination of several dynamical feedbacks underestimated in the models at present, such as those related to ocean mixing and cloud albedo, may have been responsible for these climate conditions.


Nature | 2010

Tropical cyclones and permanent El Niño in the early Pliocene epoch

Alexey V. Fedorov; Chris M. Brierley; Kerry A. Emanuel

Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth’s climate system. In particular, by vigorously mixing the upper ocean, they can affect the ocean’s heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene epoch (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean’s wind-driven circulation. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change.


Bulletin of the American Meteorological Society | 2003

How Predictable Is El Niño

Alexey V. Fedorov; S. L. Harper; S. G. H. Philander; B. Winter; Andrew T. Wittenberg

Abstract Nobody anticipated that El Nino would be weak and prolonged in 1992, but brief and intense in 1997/98. Why are various El Nino episodes so different, and so difficult to predict? The answer involves the important role played by random atmospheric disturbances (such as westerly wind bursts) in sustaining the weakly damped Southern Oscillation, whose complementary warm and cold phases are, respectively, El Nino and La Nina. As in the case of a damped pendulum sustained by modest blows at random times, so the predictability of El Nino is limited, not by the amplification of errors in initial conditions as in the case of weather, but mainly by atmospheric disturbances interacting with the Southern Oscillation. Given the statistics of the wind fluctuations, the probability distribution function of future sea surface temperature fluctuations in the eastern equatorial Pacific can be determined by means of an ensemble of calculations with a coupled ocean–atmosphere model. Each member of the ensemble star...


Journal of Physical Oceanography | 2004

The Thermal Structure of the Upper Ocean

Giulio Boccaletti; R. C. Pacanowski; S. George; H. Philander; Alexey V. Fedorov

Abstract The salient feature of the oceanic thermal structure is a remarkably shallow thermocline, especially in the Tropics and subtropics. What factors determine its depth? Theories for the deep thermohaline circulation provide an answer that depends on oceanic diffusivity, but they deny the surface winds an explicit role. Theories for the shallow ventilated thermocline take into account the influence of the wind explicitly, but only if the thermal structure in the absence of any winds, the thermal structure along the eastern boundary, is given. To complete and marry the existing theories for the oceanic thermal structure, this paper invokes the constraint of a balanced heat budget for the ocean. The oceanic heat gain occurs primarily in the upwelling zones of the Tropics and subtropics and depends strongly on oceanic conditions, specifically the depth of the thermocline. The heat gain is large when the thermocline is shallow but is small when the thermocline is deep. The constraint of a balanced heat b...


Journal of Physical Oceanography | 2004

The Effect of Salinity on the Wind-Driven Circulation and the Thermal Structure of the Upper Ocean

Alexey V. Fedorov; R. C. Pacanowski; S. G. H. Philander; Giulio Boccaletti

Studies of the effect of a freshening of the surface waters in high latitudes on the oceanic circulation have thus far focused almost entirely on the deep thermohaline circulation and its poleward heat transport. Here it is demonstrated, by means of an idealized general circulation model, that a similar freshening can also affect the shallow, wind-driven circulation of the ventilated thermocline and its heat transport from regions of gain (mainly in the upwelling zones of low latitudes) to regions of loss in higher latitudes. A freshening that decreases the surface density gradient between low and high latitudes reduces this poleward heat transport, thus forcing the ocean to gain less heat in order to maintain a balanced heat budget. The result is a deepening of the equatorial thermocline. (The deeper the thermocline in equatorial upwelling zones is, the less heat the ocean gains.) For a sufficiently strong freshwater forcing, the poleward heat transport all but vanishes, and permanently warm conditions prevail in the Tropics. The approach to warm oceanic conditions is shown to introduce a bifurcation mechanism for the north‐south asymmetry of the thermal and salinity structure of the upper ocean.

Collaboration


Dive into the Alexey V. Fedorov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. C. Pacanowski

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge