Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexey Vladimirovich Borisov is active.

Publication


Featured researches published by Alexey Vladimirovich Borisov.


Uspekhi Matematicheskikh Nauk | 2010

Топология и устойчивость интегрируемых систем@@@Topology and stability of integrable systems

Алексей Викторович Болсинов; Aleksei Viktorovich Bolsinov; Алексей Владимирович Борисов; Alexey Vladimirovich Borisov; Иван Сергеевич Мамаев; Ivan S. Mamaev

В работе предложен общий топологический подход к исследованию устойчивости периодических решений интегрируемых динамических систем с двумя степенями свободы. Развиваемые методы проиллюстрированы на примерах нескольких интегрируемых задач, связанных с классическими уравнениями Эйлера–Пуассона, движением твердого тела в жидкости, а также динамикой газообразных расширяющихся эллипсоидов. Данные топологические методы позволяют также отыскивать невырожденные периодические решения интегрируемых систем, что является особенно актуальным в тех случаях, когда общее решение, например, при помощи разделения переменных, неизвестно. Библиография: 82 названия.


Nonlinearity | 2015

Geometrisation of Chaplygin's reducing multiplier theorem

Alexey V. Bolsinov; Alexey Vladimirovich Borisov; Ivan S. Mamaev

We develop the reducing multiplier theory for a special class of nonholonomic dynamical systems and show that the non-linear Poisson brackets naturally obtained in the framework of this approach are all isomorphic to the Lie-Poisson


Regular & Chaotic Dynamics | 2014

Superintegrable generalizations of the Kepler and Hook problems

Ivan A. Bizyaev; Alexey Vladimirovich Borisov; Ivan S. Mamaev

e(3)


Celestial Mechanics and Dynamical Astronomy | 2015

Figures of equilibrium of an inhomogeneous self-gravitating fluid

Ivan A. Bizyaev; Alexey Vladimirovich Borisov; Ivan S. Mamaev

-bracket. As two model examples, we consider the Chaplygin ball problem on the plane and the Veselova system. In particular, we obtain an integrable gyrostatic generalisation of the Veselova system.


Regular & Chaotic Dynamics | 2016

Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups

Ivan A. Bizyaev; Alexey Vladimirovich Borisov; Alexander A. Kilin; Ivan S. Mamaev

In this paper we consider superintegrable systems which are an immediate generalization of the Kepler and Hook problems, both in two-dimensional spaces — the plane ℝ2 and the sphere S2 — and in three-dimensional spaces ℝ3 and S3. Using the central projection and the reduction procedure proposed in [21], we show an interrelation between the superintegrable systems found previously and show new ones. In all cases the superintegrals are presented in explicit form.


arXiv: Chaotic Dynamics | 2005

Dynamics of rolling disk

Alexey Vladimirovich Borisov; Ivan S. Mamaev; Alexander A. Kilin

This paper is concerned with the figures of equilibrium of a self-gravitating ideal fluid with a stratified density and a steady-state velocity field. As in the classical formulation of the problem, it is assumed that the figures, or their layers, uniformly rotate about an axis fixed in space. It is shown that the ellipsoid of revolution (spheroid) with confocal stratification, in which each layer rotates with a constant angular velocity, is at equilibrium. Expressions are obtained for the gravitational potential, change in the angular velocity and pressure, and the conclusion is drawn that the angular velocity on the outer surface is the same as that of the corresponding Maclaurin spheroid. We note that the solution found generalizes a previously known solution for piecewise constant density distribution. For comparison, we also present a solution, due to Chaplygin, for a homothetic density stratification. We conclude by considering a homogeneous spheroid in the space of constant positive curvature. We show that in this case the spheroid cannot rotate as a rigid body, since the angular velocity distribution of fluid particles depends on the distance to the symmetry axis.


arXiv: Chaotic Dynamics | 2004

ABSOLUTE AND RELATIVE CHOREOGRAPHIES IN THE PROBLEM OF POINT VORTICES MOVING ON A PLANE

Alexey Vladimirovich Borisov; Ivan S. Mamaev; Alexander A. Kilin

This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincaré map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.


Matematicheskie Zametki | 2001

Гамильтоновость задачи Чаплыгина о качении шара@@@Chaplygin's Ball Rolling Problem Is Hamiltonian

Алексей Владимирович Борисов; Alexey Vladimirovich Borisov; Иван Сергеевич Мамаев; Ivan S. Mamaev


Matematicheskie Zametki | 2002

Согласованные скобки Пуассона на алгебрах Ли@@@Compatible Poisson Brackets on Lie Algebras

Алексей Викторович Болсинов; Aleksei Viktorovich Bolsinov; Алексей Владимирович Борисов; Alexey Vladimirovich Borisov


arXiv: Chaotic Dynamics | 2005

Lie algebras in vortex dynamics and celestial mechanics - IV

Alexey V. Bolsinov; Alexey Vladimirovich Borisov; Ivan S. Mamaev

Collaboration


Dive into the Alexey Vladimirovich Borisov's collaboration.

Top Co-Authors

Avatar

Ivan S. Mamaev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. V. Boychenko

National Research Nuclear University MEPhI

View shared research outputs
Top Co-Authors

Avatar

Dmitry Treschev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L.N. Kessarinskiy

National Research Nuclear University MEPhI

View shared research outputs
Top Co-Authors

Avatar

Pavel E. Ryabov

Financial University under the Government of the Russian Federation

View shared research outputs
Researchain Logo
Decentralizing Knowledge