Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis R. Barr is active.

Publication


Featured researches published by Alexis R. Barr.


Journal of Cell Science | 2007

Aurora-A: the maker and breaker of spindle poles.

Alexis R. Barr; Fanni Gergely

The gene encoding the Aurora-A protein kinase is located in the 20q13 breast cancer amplicon and is also overexpressed in colorectal, pancreatic and gastric tumours. Although Aurora-A may not be a bona fide oncoprotein in humans, it is a promising drug target in cancer therapy. Thus, it is surprising that so little is known of its role in normal cells. The primary function of Aurora-A is to promote bipolar spindle assembly, but the molecular details of this process remained obscure until recently. The discovery of several novel Aurora-A-binding proteins and substrates has implicated Aurora-A in centrosome maturation and separation, acentrosomal and centrosomal spindle assembly, kinetochore function, cytokinesis and in cell fate determination. Here we discuss recent advances in determining the early mitotic role of Aurora-A, with a strong emphasis on its function at the mitotic spindle poles.


Nature Genetics | 2011

A primary microcephaly protein complex forms a ring around parental centrioles

Joo-Hee Sir; Alexis R. Barr; Adeline K. Nicholas; Ofélia P. Carvalho; Maryam Khurshid; Alex Sossick; Stefanie Reichelt; Clive D'Santos; C. Geoffrey Woods; Fanni Gergely

Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.


Molecular and Cellular Biology | 2005

The F-Box DNA Helicase Fbh1 Prevents Rhp51-Dependent Recombination without Mediator Proteins

Fekret Osman; Julie Dixon; Alexis R. Barr; Matthew C. Whitby

ABSTRACT A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1− mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.


Nature Cell Biology | 2013

A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions between Discrete Cell Shapes

Zheng Yin; Amine Sadok; Heba Sailem; Afshan McCarthy; Xiaofeng Xia; Fuhai Li; Mar Arias Garcia; Louise Evans; Alexis R. Barr; Norbert Perrimon; Christopher J. Marshall; Stephen T. C. Wong; Chris Bakal

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.


Journal of Cell Biology | 2010

CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response

Alexis R. Barr; John V. Kilmartin; Fanni Gergely

Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles.


Molecular and Cellular Biology | 2008

MCAK-independent functions of ch-Tog/XMAP215 in microtubule plus-end dynamics.

Alexis R. Barr; Fanni Gergely

ABSTRACT The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.


Nature Communications | 2017

DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression

Alexis R. Barr; Samuel J. Cooper; Frank S. Heldt; Francesca Butera; Henriette Stoy; Jörg Mansfeld; Bela Novak; Chris Bakal

Following DNA damage caused by exogenous sources, such as ionizing radiation, the tumour suppressor p53 mediates cell cycle arrest via expression of the CDK inhibitor, p21. However, the role of p21 in maintaining genomic stability in the absence of exogenous DNA-damaging agents is unclear. Here, using live single-cell measurements of p21 protein in proliferating cultures, we show that naturally occurring DNA damage incurred over S-phase causes p53-dependent accumulation of p21 during mother G2- and daughter G1-phases. High p21 levels mediate G1 arrest via CDK inhibition, yet lower levels have no impact on G1 progression, and the ubiquitin ligases CRL4Cdt2 and SCFSkp2 couple to degrade p21 prior to the G1/S transition. Mathematical modelling reveals that a bistable switch, created by CRL4Cdt2, promotes irreversible S-phase entry by keeping p21 levels low, preventing premature S-phase exit upon DNA damage. Thus, we characterize how p21 regulates the proliferation-quiescence decision to maintain genomic stability.


Cell systems | 2016

A Dynamical Framework for the All-or-None G1/S Transition.

Alexis R. Barr; Frank S. Heldt; Tongli Zhang; Chris Bakal; Bela Novak

Summary The transition from G1 into DNA replication (S phase) is an emergent behavior resulting from dynamic and complex interactions between cyclin-dependent kinases (Cdks), Cdk inhibitors (CKIs), and the anaphase-promoting complex/cyclosome (APC/C). Understanding the cellular decision to commit to S phase requires a quantitative description of these interactions. We apply quantitative imaging of single human cells to track the expression of G1/S regulators and use these data to parametrize a stochastic mathematical model of the G1/S transition. We show that a rapid, proteolytic, double-negative feedback loop between Cdk2:Cyclin and the Cdk inhibitor p27Kip1 drives a switch-like entry into S phase. Furthermore, our model predicts that increasing Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S transition, which we validate using Emi1 knockdown and live imaging of G1/S reporters. This work provides insight into the general design principles of the signaling networks governing the temporally abrupt transitions between cell-cycle phases.


Nature Communications | 2016

A CEP215–HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer

Pavithra L. Chavali; Gayathri Chandrasekaran; Alexis R. Barr; Péter Tátrai; Chris Taylor; Evaggelia K. Papachristou; C. Geoffrey Woods; Sreenivas Chavali; Fanni Gergely

Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215–HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome–spindle pole interface by the CEP215–HSET complex could promote survival of cancer cells containing supernumerary centrosomes.


Clinical Cancer Research | 2017

Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer.

Uzma Asghar; Alexis R. Barr; Ros Cutts; Matthew Beaney; Irina S. Babina; Deepak Sampath; Jennifer Giltnane; Jennifer A. Lacap; Lisa Crocker; Amy Young; Alex Pearson; Maria Teresa Herrera-Abreu; Chris Bakal; Nicholas C. Turner

Purpose: Triple-negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer that is associated with a poor prognosis. We evaluated the activity of CDK4/6 inhibitors across the TNBC subtypes and investigated mechanisms of sensitivity. Experimental Design: A panel of cell lines representative of TNBC was tested for in vitro and in vivo sensitivity to CDK4/6 inhibition. A fluorescent CDK2 activity reporter was used for single-cell analysis in conjunction with time-lapse imaging. Results: The luminal androgen receptor (LAR) subtype of TNBC was highly sensitive to CDK4/6 inhibition both in vitro (P < 0.001 LAR vs. basal-like) and in vivo in MDA-MB-453 LAR cell line xenografts. Single-cell analysis of CDK2 activity demonstrated differences in cell-cycle dynamics between LAR and basal-like cells. Palbociclib-sensitive LAR cells exit mitosis with low levels of CDK2 activity, into a quiescent state that requires CDK4/6 activity for cell-cycle reentry. Palbociclib-resistant basal-like cells exit mitosis directly into a proliferative state, with high levels of CDK2 activity, bypassing the restriction point and the requirement for CDK4/6 activity. High CDK2 activity after mitosis is driven by temporal deregulation of cyclin E1 expression. CDK4/6 inhibitors were synergistic with PI3 kinase inhibitors in PIK3CA-mutant TNBC cell lines, extending CDK4/6 inhibitor sensitivity to additional TNBC subtypes. Conclusions: Cell-cycle dynamics determine the response to CDK4/6 inhibition in TNBC. CDK4/6 inhibitors, alone and in combination, are a novel therapeutic strategy for specific subgroups of TNBC. Clin Cancer Res; 23(18); 5561–72. ©2017 AACR.

Collaboration


Dive into the Alexis R. Barr's collaboration.

Top Co-Authors

Avatar

Chris Bakal

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Beaney

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Nicholas C. Turner

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge