Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Chris Bakal is active.

Publication


Featured researches published by Chris Bakal.


Immunity | 2003

The MAGUK family protein CARD11 is essential for lymphocyte activation.

Hiromitsu Hara; Teiji Wada; Chris Bakal; Ivona Kozieradzki; Shinobu Suzuki; Nobutaka Suzuki; Mai Nghiem; Emily K Griffiths; Connie M. Krawczyk; Birgit Bauer; Fulvio D'Acquisto; Sankar Ghosh; Wen-Chen Yeh; Gottfried Baier; Robert Rottapel; Josef M. Penninger

Members of the MAGUK family proteins cluster receptors and intracellular signaling molecules at the neuronal synapse. We report that genetic inactivation of the MAGUK family protein CARD11/Carma1/Bimp3 results in a complete block in T and B cell immunity. CARD11 is essential for antigen receptor- and PKC-mediated proliferation and cytokine production in T and B cells due to a selective defect in JNK and NFkappaB activation. Moreover, B cell proliferation and JNK activation were impaired upon stimulation of TLR4 with lipopolysaccharide, indicating that CARD11 is involved in both the innate and adaptive immune systems. Our results show that the same family of molecules are critical regulators of neuronal synapses and immune receptor signaling.


Science | 2007

Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology

Chris Bakal; John Aach; George M. Church; Norbert Perrimon

Although classical genetic and biochemical approaches have identified hundreds of proteins that function in the dynamic remodeling of cell shape in response to upstream signals, there is currently little systems-level understanding of the organization and composition of signaling networks that regulate cell morphology. We have developed quantitative morphological profiling methods to systematically investigate the role of individual genes in the regulation of cell morphology in a fast, robust, and cost-efficient manner. We analyzed a compendium of quantitative morphological signatures and described the existence of local signaling networks that act to regulate cell protrusion, adhesion, and tension.


Annual Review of Biochemistry | 2010

Genomic Screening with RNAi: Results and Challenges

Stephanie E. Mohr; Chris Bakal; Norbert Perrimon

RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.


Journal of Experimental Medicine | 2004

Survivin Loss in Thymocytes Triggers p53-mediated Growth Arrest and p53-independent Cell Death

Hitoshi Okada; Chris Bakal; Arda Shahinian; Andrew Elia; Andrew Wakeham; Woong-Kyung Suh; Gordon S. Duncan; Maria Ciofani; Robert Rottapel; Juan Carlos Zúñiga-Pflücker; Tak W. Mak

Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development.


Science | 2008

Phosphorylation Networks Regulating JNK Activity in Diverse Genetic Backgrounds

Chris Bakal; Rune Linding; Flora Llense; Elleard Heffern; Enrique Martín-Blanco; Tony Pawson; Norbert Perrimon

Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have succeeded in providing parts lists of the essential components of signaling networks, they typically do not provide much insight into the hierarchical and functional relations that exist among these components. We describe a high-throughput screen in which we used RNA interference to systematically inhibit two genes simultaneously in 17,724 combinations to identify regulators of Drosophila JUN NH2-terminal kinase (JNK). Using both genetic and phosphoproteomics data, we then implemented an integrative network algorithm to construct a JNK phosphorylation network, which provides structural and mechanistic insights into the systems architecture of JNK signaling.


Nature Cell Biology | 2013

A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions between Discrete Cell Shapes

Zheng Yin; Amine Sadok; Heba Sailem; Afshan McCarthy; Xiaofeng Xia; Fuhai Li; Mar Arias Garcia; Louise Evans; Alexis R. Barr; Norbert Perrimon; Christopher J. Marshall; Stephen T. C. Wong; Chris Bakal

The way in which cells adopt different morphologies is not fully understood. Cell shape could be a continuous variable or restricted to a set of discrete forms. We developed quantitative methods to describe cell shape and show that Drosophila haemocytes in culture are a heterogeneous mixture of five discrete morphologies. In an RNAi screen of genes affecting the morphological complexity of heterogeneous cell populations, we found that most genes regulate the transition between discrete shapes rather than generating new morphologies. In particular, we identified a subset of genes, including the tumour suppressor PTEN, that decrease the heterogeneity of the population, leading to populations enriched in rounded or elongated forms. We show that these genes have a highly conserved function as regulators of cell shape in both mouse and human metastatic melanoma cells.


Trends in Cell Biology | 2000

No longer an exclusive club: eukaryotic signalling domains in bacteria

Chris Bakal; Julian Davies

Reversible phosphorylation of serine, threonine and tyrosine residues by the interplay of protein kinases and phosphatases plays a key role in regulating many different cellular processes in eukaryotic organisms. A diversity of control mechanisms exists to influence the activity of these enzymes and choreograph the correct concert of protein modifications to achieve distinct biological responses. Such enzymes and their adaptor molecules were long thought to be specific to eukaryotic cellular processes. However, there is increasing evidence that many prokaryotes achieve regulation of key components of cellular function through similar mechanisms.


Journal of Experimental Medicine | 2004

The Molecular Adapter Carma1 Controls Entry of IκB Kinase into the Central Immune Synapse

Hiromitsu Hara; Chris Bakal; Teiji Wada; Denis Bouchard; Robert Rottapel; Takashi Saito; Josef M. Penninger

Carma1 (also known as caspase recruitment domain [CARD]11, Bimp3) is a CARD-containing membrane-associated guanylate kinase family protein that plays an essential role in antigen receptor–induced nuclear factor κB activation. We investigated the role of Carma1 in the assembly of signaling molecules at the immune synapse using a peptide-specific system. We report that Carma1 is essential for peptide-induced interleukin 2 and interferon γ production, but dispensable for proliferation in T cells. Recruitment and distribution of T cell receptor, lymphocyte function associated 1, lipid rafts, and protein kinase C (PKC)θ to central and peripheral immune synapse regions occur normally in Carma1 − / − T cells. Carma1 controls entry of IκB kinase (IKK) into lipid raft aggregates and the central region of the immune synapse, as well as activation of IKK downstream of PKC. Our data provide the first genetic evidence on a new class of molecular scaffold that controls entry of defined signaling components, IKK, into the central supramolecular activation cluster at T cell–antigen-presenting cell interfaces without having any apparent effect on the overall organization and formation of immune synapses.


Molecular Systems Biology | 2015

Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells

Julia E. Sero; Heba Sailem; Rico Ardy; Hannah Almuttaqi; Tongli Zhang; Chris Bakal

Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell-cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues.Although a great deal is known about the signaling events that promote nuclear translocation of NF‐κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high‐content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF‐κB activation using the inherent variability present in unperturbed populations of breast tumor and non‐tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF‐κB localization in the absence and presence of TNFα. Higher levels of nuclear NF‐κB were associated with mesenchymal‐like versus epithelial‐like morphologies, and RhoA‐ROCK‐myosin II signaling was critical for mediating shape‐based differences in NF‐κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF‐κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues.


Molecular Cell | 2012

Mechanistic Insight into the Microtubule and Actin Cytoskeleton Coupling through Dynein-Dependent RhoGEF Inhibition

David Meiri; Christopher B. Marshall; Melissa A. Greeve; Bryan Kim; Marc Balan; Fernando Suarez; Chris Bakal; Chuanjin Wu; Jose LaRose; Noah Fine; Mitsuhiko Ikura; Robert Rottapel

Actin-based stress fiber formation is coupled to microtubule depolymerization through the local activation of RhoA. While the RhoGEF Lfc has been implicated in this cytoskeleton coupling process, it has remained elusive how Lfc is recruited to microtubules and how microtubule recruitment moderates Lfc activity. Here, we demonstrate that the dynein light chain protein Tctex-1 is required for localization of Lfc to microtubules. Lfc residues 139-161 interact with Tctex-1 at a site distinct from the cleft that binds dynein intermediate chain. An NMR-based GEF assay revealed that interaction with Tctex-1 represses Lfc nucleotide exchange activity in an indirect manner that requires both polymerized microtubules and phosphorylation of S885 by PKA. We show that inhibition of Lfc by Tctex-1 is dynein dependent. These studies demonstrate a pivotal role of Tctex-1 as a negative regulator of actin filament organization through its control of Lfc in the crosstalk between microtubule and actin cytoskeletons.

Collaboration


Dive into the Chris Bakal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis R. Barr

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Sánchez-Álvarez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge