Aleyde Van Eynde
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aleyde Van Eynde.
Nature | 2006
Emmanuelle Viré; Carmen Brenner; Rachel Deplus; Loïc Blanchon; Mario F. Fraga; Céline Didelot; Lluis Morey; Aleyde Van Eynde; David Bernard; Jean-Marie Vanderwinden; Mathieu Bollen; Manel Esteller; Luciano Di Croce; Yvan De Launoit; François Fuks
The establishment and maintenance of epigenetic gene silencing is fundamental to cell determination and function. The essential epigenetic systems involved in heritable repression of gene activity are the Polycomb group (PcG) proteins and the DNA methylation systems. Here we show that the corresponding silencing pathways are mechanistically linked. We find that the PcG protein EZH2 (Enhancer of Zeste homolog 2) interacts—within the context of the Polycomb repressive complexes 2 and 3 (PRC2/3)—with DNA methyltransferases (DNMTs) and associates with DNMT activity in vivo. Chromatin immunoprecipitations indicate that binding of DNMTs to several EZH2-repressed genes depends on the presence of EZH2. Furthermore, we show by bisulphite genomic sequencing that EZH2 is required for DNA methylation of EZH2-target promoters. Our results suggest that EZH2 serves as a recruitment platform for DNA methyltransferases, thus highlighting a previously unrecognized direct connection between two key epigenetic repression systems.
Journal of Cell Science | 2005
Silvia Jansen; Cristiana Stefan; John Creemers; Etienne Waelkens; Aleyde Van Eynde; Willy Stalmans; Mathieu Bollen
Autotaxin (NPP2) is an extracellular protein that is upregulated in various malignancies, including breast and lung cancer. It potently stimulates cell proliferation, cell motility and angiogenesis, which is accounted for by its intrinsic lysophospholipase-D activity that generates the lipid mediators lysophosphatidic acid and sphingosine-1-phosphate. Based on its structural similarities with the better characterized nucleotide pyrophosphatase/phosphodiesterase NPP1, it has always been assumed that NPP2 is also synthesized as a type-II integral membrane protein and that extracellular NPP2 is generated from this membrane precursor. We show here, however, using domain swapping and mutagenesis experiments as well as N-terminal protein sequencing, that NPP2 is actually synthesized as a pre-pro-enzyme and that the proteolytically processed protein is secreted. Following the removal of a 27-residue signal peptide by the signal peptidase, NPP2 is subsequently cleaved by proprotein convertases (PCs). The removal of an N-terminal octapeptide by PCs is associated with an enhanced activity of NPP2 as a lysophospholipase D. These novel insights in the maturation of NPP2 have also implications for the development of NPP2 inhibitors as potential anti-cancer agents.
Current Biology | 2011
Junbin Qian; Bart Lesage; Monique Beullens; Aleyde Van Eynde; Mathieu Bollen
The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.
Journal of Biological Chemistry | 2000
An Boudrez; Monique Beullens; Peter Groenen; Aleyde Van Eynde; Veerle Vulsteke; Izabela Jagiello; Michael V. Murray; Adrian R. Krainer; Willy Stalmans; Mathieu Bollen
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G2/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g.by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G2/M transition. However, the FHA domain blocked β-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.
Journal of Biological Chemistry | 1999
Monique Beullens; Aleyde Van Eynde; Veerle Vulsteke; John H. Connor; Shirish Shenolikar; Willy Stalmans; Mathieu Bollen
NIPP-1 is a subunit of the major nuclear protein phosphatase-1 (PP-1) in mammalian cells and potently inhibits PP-1 activity in vitro. Using yeast two-hybrid and co-sedimentation assays, we mapped a PP-1-binding site and the inhibition function to the central one-third domain of NIPP-1. Full-length NIPP-1 (351 residues) and the central domain, NIPP-1143–217, were equally potent PP-1 inhibitors (IC50 = 0.3 nm). Synthetic peptides spanning the central domain of NIPP-1 further narrowed the PP-1 inhibitory function to residues 191–200. A second, noninhibitory PP-1-binding site was identified by far-Western assays with digoxygenin-conjugated catalytic subunit (PP-1C) and included a consensus RVXF motif (residues 200–203) found in many other PP-1-binding proteins. The substitutions, V201A and/or F203A, in the RVXF motif, or phosphorylation of Ser199 or Ser204, which are established phosphorylation sites for protein kinase A and protein kinase CK2, respectively, prevented PP-1C-binding by NIPP-1191–210 in the far-Western assay. NIPP-1191–210 competed for PP-1 inhibition by full-length NIPP-11–351, inhibitor-1 and inhibitor-2, and dissociated PP-1C from inhibitor-1- and NIPP-1143–217-Sepharose but not from full-length NIPP-11–351-Sepharose. Together, these data identified some of the key elements in the central domain of NIPP-1 that regulate PP-1 activity and suggested that the flanking sequences stabilize the association of NIPP-1 with PP-1C.
Journal of Biological Chemistry | 2004
Veerle Vulsteke; Monique Beullens; An Boudrez; Stefaan Keppens; Aleyde Van Eynde; Mark H. Rider; Willy Stalmans; Mathieu Bollen
NIPP1 is a ubiquitous nuclear protein that is required for spliceosome assembly. We report here that the phosphothreonine-binding Forkhead-associated domain of NIPP1 interacts with the cell cycle-regulated protein Ser/Thr kinase MELK (maternal embryonic leucine zipper kinase). The NIPP1-MELK interaction was critically dependent on the phosphorylaton of Thr-478 of MELK and was increased in lysates from mitotically arrested cells. Recombinant MELK was a potent inhibitor of an early step of spliceosome assembly in nuclear extracts. This splicing defect was also seen with a kinase-dead mutant but was absent after mutation (T478A) of the NIPP1 binding site of MELK, indicating a mediatory role for NIPP1. Our data suggest that MELK has a role in the cell cycle-regulated control of pre-mRNA splicing.
Journal of Biological Chemistry | 2011
Tatiana Ammosova; Venkat S. R. K. Yedavalli; Xiaomei Niu; Marina Jerebtsova; Aleyde Van Eynde; Monique Beullens; Mathieu Bollen; Kuan-Teh Jeang; Sergei Nekhai
CDK9/cyclin T1, a key enzyme in HIV-1 transcription, is negatively regulated by 7SK RNA and the HEXIM1 protein. Dephosphorylation of CDK9 on Thr186 by protein phosphatase 1 (PP1) in stress-induced cells or by protein phosphatase M1A in normally growing cells activates CDK9. Our previous studies showed that HIV-1 Tat protein binds to PP1 through the Tat Q35VCF38 sequence, which is similar to the PP1-binding RVXF motif and that this interaction facilitates HIV-1 transcription. In the present study, we analyzed the effect of expression of the central domain of nuclear inhibitor of PP1 (cdNIPP1) in an engineered cell line and also when cdNIPP1 was expressed as part of HIV-1 pNL4-3 in place of nef. Stable expression of cdNIPP1 increased CDK9 phosphorylation on Thr186 and the association of CDK9 with 7SK RNA. The stable expression of cdNIPP1 disrupted the interaction of Tat and PP1 and inhibited HIV-1 transcription. Expression of cdNIPP1 as a part of the HIV-1 genome inhibited HIV-1 replication. Our study provides a proof-of-concept for the future development of PP1-targeting compounds as inhibitors of HIV-1 replication.
Nucleic Acids Research | 2010
Nele Van Dessel; Lijs Beke; Janina Görnemann; Nikki Minnebo; Monique Beullens; Nobuhiro Tanuma; Hiroshi Shima; Aleyde Van Eynde; Mathieu Bollen
Polycomb group (PcG) proteins are key regulators of stem-cell and cancer biology. They mainly act as repressors of differentiation and tumor-suppressor genes. One key silencing step involves the trimethylation of histone H3 on Lys27 (H3K27) by EZH2, a core component of the Polycomb Repressive Complex 2 (PRC2). The mechanism underlying the initial recruitment of mammalian PRC2 complexes is not well understood. Here, we show that NIPP1, a regulator of protein Ser/Thr phosphatase-1 (PP1), forms a complex with PP1 and PRC2 components on chromatin. The knockdown of NIPP1 or PP1 reduced the association of EZH2 with a subset of its target genes, whereas the overexpression of NIPP1 resulted in a retargeting of EZH2 from fully repressed to partially active PcG targets. However, the expression of a PP1-binding mutant of NIPP1 (NIPP1m) did not cause a redistribution of EZH2. Moreover, mapping of the chromatin binding sites with the DamID technique revealed that NIPP1 was associated with multiple PcG target genes, including the Homeobox A cluster, whereas NIPP1m showed a deficient binding at these loci. We propose that NIPP1 associates with a subset of PcG targets in a PP1-dependent manner and thereby contributes to the recruitment of the PRC2 complex.
Molecular and Cellular Biology | 2004
Aleyde Van Eynde; Mieke Nuytten; Mieke Dewerchin; Luc Schoonjans; Stefaan Keppens; Monique Beullens; Lieve Moons; Peter Carmeliet; Willy Stalmans; Mathieu Bollen
ABSTRACT NIPP1 (nuclear inhibitor of protein phosphatase 1) is a ubiquitously expressed nuclear scaffold protein that has been implicated in both transcription and RNA processing. Among its protein ligands are a protein kinase, a protein phosphatase, two splicing factors, and a transcriptional regulator, and the binding of these proteins to NIPP1 is tightly regulated by phosphorylation. To study the function of NIPP1 in vivo, we have used homologous recombination to generate mice that are deficient in NIPP1. NIPP1−/+ mice developed normally. However, NIPP1−/− embryos showed severely retarded growth at embryonic day 6.5 (E6.5) and were resorbed by E8.5. This early embryonic lethality was not associated with increased apoptosis but correlated with impaired cell proliferation. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of NIPP1 in cultured cells also revealed an essential role for NIPP1 in cell proliferation. In further agreement with this function, no viable NIPP1−/− cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of NIPP1−/+ intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of Geneticin. We conclude that NIPP1 is indispensable for early embryonic development and cell proliferation.
Journal of Biological Chemistry | 2013
Cenk Kig; Monique Beullens; Lijs Beke; Aleyde Van Eynde; Johannes T. Linders; Dirk Brehmer; Mathieu Bollen
Background: Protein kinase MELK is expressed at very high levels in glioblastomas, but it is not understood how this benefits tumor growth. Results: A deficiency of MELK causes replication stress and is associated with cell cycle arrest and senescence. Conclusion: MELK is required for progression through unperturbed S phase. Significance: The inhibition of MELK emerges as an attractive cancer therapy. Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK. This cell cycle arrest is mediated by an increased expression of p21WAF1/CIP1, an inhibitor of cyclin-dependent kinases, and is associated with the hypophosphorylation of the retinoblastoma protein and the down-regulation of E2F target genes. The increased expression of p21 can be explained by the consecutive activation of ATM (ataxia telangiectasia mutated), Chk2, and p53. Intriguingly, the activation of p53 in MELK-deficient cells is not due to an increased stability of p53 but stems from the loss of MDMX (mouse double minute-X), an inhibitor of p53 transactivation. The activation of the ATM-Chk2 pathway in MELK-deficient cells is associated with the accumulation of DNA double-strand breaks during replication, as demonstrated by the appearance of γH2AX foci. Replication stress in these cells is also illustrated by an increased number of stalled replication forks and a reduced fork progression speed. Our data indicate that glioblastoma cells have elevated MELK protein levels to better cope with replication stress during unperturbed S phase. Hence, MELK inhibitors hold great potential for the treatment of glioblastomas as such or in combination with DNA-damaging therapies.