Willy Stalmans
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Willy Stalmans.
Critical Reviews in Biochemistry and Molecular Biology | 2000
Mathieu Bollen; Rik Gijsbers; Hugo Ceulemans; Willy Stalmans; Christiana Stefan
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5′-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130RB13-6). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.
Critical Reviews in Biochemistry and Molecular Biology | 1992
Mathieu Bollen; Willy Stalmans
Type 1 protein phosphatases (PP-1) comprise a group of widely distributed enzymes that specifically dephosphorylate serine and threonine residues of certain phosphoproteins. They all contain an isoform of the same catalytic subunit, which has an extremely conserved primary structure. One of the properties of PP-1 that allows one to distinguish them from other serine/threonine protein phosphatases is their sensitivity to inhibition by two proteins, termed inhibitor 1 and inhibitor 2, or modulator. The latter protein can also form a 1:1 complex with the catalytic subunit that slowly inactivates upon incubation. This complex is reactivated in vitro by incubation with MgATP and protein kinase FA/GSK-3. In the cell the type 1 catalytic subunit is associated with noncatalytic subunits that determine the activity, the substrate specificity, and the subcellular location of the phosphatase. PP-1 plays an essential role in glycogen metabolism, calcium transport, muscle contraction, intracellular transport, protein synthesis, and cell division. The activity of PP-1 is regulated by hormones like insulin, glucagon, alpha- and beta-adrenergic agonists, glucocorticoids, and thyroid hormones.
Journal of Cell Science | 2005
Silvia Jansen; Cristiana Stefan; John Creemers; Etienne Waelkens; Aleyde Van Eynde; Willy Stalmans; Mathieu Bollen
Autotaxin (NPP2) is an extracellular protein that is upregulated in various malignancies, including breast and lung cancer. It potently stimulates cell proliferation, cell motility and angiogenesis, which is accounted for by its intrinsic lysophospholipase-D activity that generates the lipid mediators lysophosphatidic acid and sphingosine-1-phosphate. Based on its structural similarities with the better characterized nucleotide pyrophosphatase/phosphodiesterase NPP1, it has always been assumed that NPP2 is also synthesized as a type-II integral membrane protein and that extracellular NPP2 is generated from this membrane precursor. We show here, however, using domain swapping and mutagenesis experiments as well as N-terminal protein sequencing, that NPP2 is actually synthesized as a pre-pro-enzyme and that the proteolytically processed protein is secreted. Following the removal of a 27-residue signal peptide by the signal peptidase, NPP2 is subsequently cleaved by proprotein convertases (PCs). The removal of an N-terminal octapeptide by PCs is associated with an enhanced activity of NPP2 as a lysophospholipase D. These novel insights in the maturation of NPP2 have also implications for the development of NPP2 inhibitors as potential anti-cancer agents.
Journal of Biological Chemistry | 2000
An Boudrez; Monique Beullens; Peter Groenen; Aleyde Van Eynde; Veerle Vulsteke; Izabela Jagiello; Michael V. Murray; Adrian R. Krainer; Willy Stalmans; Mathieu Bollen
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G2/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g.by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G2/M transition. However, the FHA domain blocked β-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.
Journal of Biological Chemistry | 1999
Monique Beullens; Aleyde Van Eynde; Veerle Vulsteke; John H. Connor; Shirish Shenolikar; Willy Stalmans; Mathieu Bollen
NIPP-1 is a subunit of the major nuclear protein phosphatase-1 (PP-1) in mammalian cells and potently inhibits PP-1 activity in vitro. Using yeast two-hybrid and co-sedimentation assays, we mapped a PP-1-binding site and the inhibition function to the central one-third domain of NIPP-1. Full-length NIPP-1 (351 residues) and the central domain, NIPP-1143–217, were equally potent PP-1 inhibitors (IC50 = 0.3 nm). Synthetic peptides spanning the central domain of NIPP-1 further narrowed the PP-1 inhibitory function to residues 191–200. A second, noninhibitory PP-1-binding site was identified by far-Western assays with digoxygenin-conjugated catalytic subunit (PP-1C) and included a consensus RVXF motif (residues 200–203) found in many other PP-1-binding proteins. The substitutions, V201A and/or F203A, in the RVXF motif, or phosphorylation of Ser199 or Ser204, which are established phosphorylation sites for protein kinase A and protein kinase CK2, respectively, prevented PP-1C-binding by NIPP-1191–210 in the far-Western assay. NIPP-1191–210 competed for PP-1 inhibition by full-length NIPP-11–351, inhibitor-1 and inhibitor-2, and dissociated PP-1C from inhibitor-1- and NIPP-1143–217-Sepharose but not from full-length NIPP-11–351-Sepharose. Together, these data identified some of the key elements in the central domain of NIPP-1 that regulate PP-1 activity and suggested that the flanking sequences stabilize the association of NIPP-1 with PP-1C.
Journal of Biological Chemistry | 2004
Veerle Vulsteke; Monique Beullens; An Boudrez; Stefaan Keppens; Aleyde Van Eynde; Mark H. Rider; Willy Stalmans; Mathieu Bollen
NIPP1 is a ubiquitous nuclear protein that is required for spliceosome assembly. We report here that the phosphothreonine-binding Forkhead-associated domain of NIPP1 interacts with the cell cycle-regulated protein Ser/Thr kinase MELK (maternal embryonic leucine zipper kinase). The NIPP1-MELK interaction was critically dependent on the phosphorylaton of Thr-478 of MELK and was increased in lysates from mitotically arrested cells. Recombinant MELK was a potent inhibitor of an early step of spliceosome assembly in nuclear extracts. This splicing defect was also seen with a kinase-dead mutant but was absent after mutation (T478A) of the NIPP1 binding site of MELK, indicating a mediatory role for NIPP1. Our data suggest that MELK has a role in the cell cycle-regulated control of pre-mRNA splicing.
FEBS Letters | 1970
Henri-Géry Hers; H De Wulf; Willy Stalmans
The administration of glucose to anesthetized fed rats causes within 1 to 2 minutes the inactivation of phosphorylase; glycogen synthetase is activated only when and if the level of phosphorylase α has been taken down below a threshold value equal to approximately 10% of the total phosphorylase. The same conclusion has been reached in a study with anesthetized fed mice. These observations are adequately explained by the previously described stimulation of the phosphorylase phosphatase reaction by glucose and inhibition of synthetase phosphatase by phosphorylase α. In some experiments, insulin caused a partial inactivation of liver phosphorylase in the liver of normal rats, but more often was without effect. When effective in the diabetic animal, insulin produced the inactivation of glycogen phosphorylase and the activation of glycogen synthetase. Glucocorticoids displayed two effects: a greater activity of phosphorylase phosphatase and a decreased inhibition of synthetase phosphatase by phosphorylase α.
Journal of Biological Chemistry | 2002
An Boudrez; Monique Beullens; Etienne Waelkens; Willy Stalmans; Mathieu Bollen
NIPP1 is a ubiquitously expressed nuclear protein that functions both as a regulator of protein Ser/Thr phosphatase-1 and as a splicing factor. The N-terminal part of NIPP1 consists of a phosphothreonine-interacting Forkhead-associated (FHA) domain. We show here that the FHA domain of NIPP1 interacts in vitro andin vivo with a TP dipeptide-rich fragment of the splicing factor SAP155/SF3b155, a component of the U2 small nuclear ribonucleoprotein particle. The NIPP1-SAP155 interaction was entirely dependent on the phosphorylation of specific TP motifs in SAP155. Mutagenesis and competition studies revealed that various phosphorylated TP motifs competed for binding to the same site in the FHA domain. The SAP155 kinases in cell lysates were blocked by the Ca2+ chelator EGTA and by the cyclin-dependent protein kinase inhibitor roscovitine. The phosphorylation level of SAP155 was dramatically increased during mitosis, and accordingly the activity of SAP155 kinases was augmented in mitotic lysates. We discuss how the interaction between NIPP1 and SAP155 could contribute to spliceosome (dis)assembly and the catalytic steps of splicing.
Journal of Biological Chemistry | 1997
Veerle Vulsteke; Monique Beullens; Etienne Waelkens; Willy Stalmans; Mathieu Bollen
NIPP-1 is the RNA-binding subunit of a major species of protein phosphatase-1 in the nucleus. We have expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1) in Sf9 cells, using the baculovirus-expression system. The purified recombinant protein was a potent (K i = 9.9 ± 0.3 pm) and specific inhibitor of protein phosphatase-1 and was stoichiometrically phosphorylated by protein kinases A and CK2. At physiological ionic strength, phosphorylation by these protein kinases drastically decreased the inhibitory potency of free NIPP-1. Phosphorylation of NIPP-1 in a heterodimeric complex with the catalytic subunit of protein phosphatase-1 resulted in an activation of the holoenzyme without a release of NIPP-1. Sequencing and phosphoamino acid analysis of tryptic phosphopeptides enabled us to identify Ser178 and Ser199 as the phosphorylation sites of protein kinase A, whereas Thr161 and Ser204were phosphorylated by protein kinase CK2. These residues all conform to consensus recognition sites for phosphorylation by protein kinases A or CK2 and are clustered near a RVXF sequence that has been identified as a motif that interacts with the catalytic subunit of protein phosphatase-1.
Biochemical Journal | 1977
G van de Werve; Willy Stalmans; H G Hers
1. The administration of insulin to anaesthetized rabbits caused the inactivation of liver phosphorylase and phosphorylase kinase, but did not change either the hepatic concentration of cyclic AMP or the activity of cyclic AMP-dependent histone kinase. All measured parameters were increased by the subsequent administration of glucagon. 2. Activation of glycogen synthase by insulin was only observed when phosphorylase had been strongly inactivated.