Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfiya Distler is active.

Publication


Featured researches published by Alfiya Distler.


Annals of the Rheumatic Diseases | 2013

Autophagy regulates TNFα-mediated joint destruction in experimental arthritis

Neng-Yu Lin; Christian Beyer; Andreas Gießl; Trayana Kireva; Carina Scholtysek; Stefan Uderhardt; Luis E. Munoz; Clara Dees; Alfiya Distler; Stefan Wirtz; Gerhard Krönke; Brian Spencer; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Autophagy is a homeostatic process to recycle dispensable and damaged cell organelles. Dysregulation of autophagic pathways has recently been implicated in the pathogenesis of various diseases. Here, we investigated the role of autophagy during joint destruction in arthritis. Methods Autophagy in osteoclasts was analysed in vitro and ex vivo by transmission electron microscopy, Western blotting and immunohistochemistry for Beclin1 and Atg7. Small molecule inhibitors, LysMCre-mediated knockout of Atg7 and lentiviral overexpression of Beclin1 were used to modulate autophagy in vitro and in vivo. Osteoclast differentiation markers were quantified by real-time PCR. The extent of bone and cartilage destruction was analysed in human tumour necrosis factor α transgenic (hTNFα tg) mice after adoptive transfer with myeloid specific Atg7-deficient bone marrow. Results Autophagy was activated in osteoclasts of human rheumatoid arthritis (RA) showing increased expression of Beclin1 and Atg7. TNFα potently induced the expression of autophagy-related genes and activated autophagy in vitro and in vivo. Activation of autophagy by overexpression of Beclin1-induced osteoclastogenesis and enhanced the resorptive capacity of cultured osteoclasts, whereas pharmacologic or genetic inactivation of autophagy prevented osteoclast differentiation. Arthritic hTNFα tg mice transplanted with Atg7fl/fl×LysMCre+ bone marrow cells (BMC) showed reduced numbers of osteoclasts and were protected from TNFα-induced bone erosion, proteoglycan loss and chondrocyte death. Conclusions These findings demonstrate that autophagy is activated in RA in a TNFα-dependent manner and regulates osteoclast differentiation and bone resorption. We thus provide evidence for a central role of autophagy in joint destruction in RA.


Annals of the Rheumatic Diseases | 2014

The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis

Clara Dees; Inga Schlottmann; Robin Funke; Alfiya Distler; Katrin Palumbo-Zerr; Pawel Zerr; Neng-Yu Lin; Christian Beyer; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Activated Wnt signalling with decreased expression of endogenous inhibitors has recently been characterised as a central pathomechanism in systemic sclerosis (SSc). Aberrant epigenetic modifications also contribute to the persistent activation of SSc fibroblasts. We investigated whether increased Wnt signalling and epigenetic changes in SSc are causally linked via promoter hypermethylation-induced silencing of Wnt antagonists. Methods The methylation status of endogenous Wnt antagonists in leucocytes and fibroblasts was evaluated by methylation-specific PCR. 5-aza-2′-deoxycytidine was used to inhibit DNA methyltransferases (Dnmts) in cultured fibroblasts and in the mouse model of bleomycin-induced skin fibrosis. Activation of Wnt signalling was assessed by analysing Axin2 mRNA levels and by staining for β-catenin. Results The promoters of DKK1 and SFRP1 were hypermethylated in fibroblasts and peripheral blood mononuclear cells of patients with SSc. Promoter hypermethylation resulted in impaired transcription and decreased expression of DKK1 and SFRP1 in SSc. Treatment of SSc fibroblasts or bleomycin-challenged mice with 5-aza prevented promoter methylation-induced silencing and increased the expression of both genes to normal levels. Reactivation of DKK1 and SFRP1 transcription by 5-aza inhibited canonical Wnt signalling in vitro and in vivo and effectively ameliorated experimental fibrosis. Conclusions We demonstrate that hypermethylation of the promoters of DKK1 and SFRP1 contributes to aberrant Wnt signalling in SSc and that Dnmt inhibition effectively reduces Wnt signalling. These data provide a novel link between epigenetic alterations and increased Wnt signalling in SSc and also have translational implications because Dnmt inhibitors are already approved for clinical use.


Nature Medicine | 2015

Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis

Katrin Palumbo-Zerr; Pawel Zerr; Alfiya Distler; Judith Fliehr; Rossella Mancuso; Jingang Huang; Dirk Mielenz; Michal Tomcik; Barbara G. Fürnrohr; Carina Scholtysek; Clara Dees; Christian Beyer; Gerhard Krönke; Daniel Metzger; Oliver Distler; Georg Schett; Jörg H W Distler

Mesenchymal responses are an essential aspect of tissue repair. Failure to terminate this repair process correctly, however, results in fibrosis and organ dysfunction. Therapies that block fibrosis and restore tissue homeostasis are not yet available for clinical use. Here we characterize the nuclear receptor NR4A1 as an endogenous inhibitor of transforming growth factor-β (TGF-β) signaling and as a potential target for anti-fibrotic therapies. NR4A1 recruits a repressor complex comprising SP1, SIN3A, CoREST, LSD1, and HDAC1 to TGF-β target genes, thereby limiting pro-fibrotic TGF-β effects. Even though temporary upregulation of TGF-β in physiologic wound healing induces NR4A1 expression and thereby creates a negative feedback loop, the persistent activation of TGF-β signaling in fibrotic diseases uses AKT- and HDAC-dependent mechanisms to inhibit NR4A1 expression and activation. Small-molecule NR4A1 agonists can overcome this lack of active NR4A1 and inhibit experimentally-induced skin, lung, liver, and kidney fibrosis in mice. Our data demonstrate a regulatory role of NR4A1 in TGF-β signaling and fibrosis, providing the first proof of concept for targeting NR4A1 in fibrotic diseases.


Annals of the Rheumatic Diseases | 2015

Signature of circulating microRNAs in osteoarthritis

Christian Beyer; Anna Zampetaki; Neng-Yu Lin; Arnd Kleyer; Carlo Perricone; Annamaria Iagnocco; Alfiya Distler; Sarah R. Langley; Kolja Gelse; Stefan Sesselmann; Rolando Lorenzini; Andreas Niemeier; B. Swoboda; Jörg H W Distler; Peter Santer; Georg Egger; Johann Willeit; Manuel Mayr; Georg Schett; Stefan Kiechl

BACKGROUND Osteoarthritis is the most common form of arthritis and a major socioeconomic burden. Our study is the first to explore the association between serum microRNA levels and the development of severe osteoarthritis of the knee and hip joint in the general population. METHODS We followed 816 Caucasian individuals from 1995 to 2010 and assessed joint arthroplasty as a definitive outcome of severe osteoarthritis of the knee and hip. After a microarray screen, we validated 12 microRNAs by real-time PCR in the entire cohort at baseline. RESULTS In Cox regression analysis, three microRNAs were associated with severe knee and hip osteoarthritis. let-7e was a negative predictor for total joint arthroplasty with an adjusted HR of 0.75 (95% CI 0.58 to 0.96; p=0.021) when normalised to U6, and 0.76 (95% CI 0.6 to 0.97; p=0.026) after normalisation to the Ct average. miRNA-454 was inversely correlated with severe knee or hip osteoarthritis with an adjusted HR of 0.77 (95% CI 0.61 to 0.97; p=0.028) when normalised to U6. This correlation was lost when data were normalised to Ct average (p=0.118). Finally, miRNA-885-5p showed a trend towards a positive relationship with arthroplasty when normalised to U6 (HR 1.24; 95% CI 0.95 to 1.62; p=0.107) or to Ct average (HR 1.30; 95% CI 0.99 to 1.70; p=0.056). CONCLUSIONS Our study is the first to identify differentially expressed circulating microRNAs in osteoarthritis patients necessitating arthroplasty in a large, population-based cohort. Among these microRNAs, let-7e emerged as potential predictor for severe knee or hip osteoarthritis.


Annals of the Rheumatic Diseases | 2013

Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis

Christian Beyer; Helena Reichert; Hümeyra Akan; Tatjana Mallano; Amelie Schramm; Clara Dees; Katrin Palumbo-Zerr; Neng-Yu Lin; Alfiya Distler; Kolja Gelse; John Varga; Oliver Distler; Georg Schett; Jor̈g H.W. Distler

Background and objectives Fibrosis is a major socioeconomic burden, but effective antifibrotic therapies are not available in the clinical routine. There is growing evidence for a central role of Wnt signalling in fibrotic diseases such as systemic sclerosis, and we therefore evaluated the translational potential of pharmacological Wnt inhibition in experimental dermal fibrosis. Methods We examined the antifibrotic effects of PKF118-310 and ICG-001, two novel inhibitors of downstream canonical Wnt signalling, in the models of prevention and treatment of bleomycin-induced dermal fibrosis as well as in experimental dermal fibrosis induced by adenoviral overexpression of a constitutively active transforming growth factor (TGF)-β receptor I. Results PKF118-310 and ICG-001 were well tolerated throughout all experiments. Both therapeutic approaches showed antifibrotic effects in preventing and reversing bleomycin-induced dermal fibrosis as measured by skin thickness, hydroxyproline content and myofibroblast counts. PKF118-310 and ICG-001 were effective in inhibiting TGF-β receptor I-driven fibrosis as assessed by the same outcome measures. Conclusions Blockade of canonical Wnt signalling by PKF118-310 and ICG-001 showed antifibrotic effects in different models of skin fibrosis. Both therapies were well tolerated. Although further experimental evidence for efficacy and tolerability is necessary, inhibition of canonical Wnt signalling is a promising treatment approach for fibrosis.


Annals of the Rheumatic Diseases | 2013

Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis

Marlene Krämer; Clara Dees; Jingang Huang; Inga Schlottmann; Katrin Palumbo-Zerr; Pawel Zerr; Kolja Gelse; Christian Beyer; Alfiya Distler; Victor E Marquez; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Epigenetic modifications such as DNA methylation and histone acetylation have been implicated in the pathogenesis of systemic sclerosis. However, histone methylation has not been investigated so far. We therefore aimed to evaluate the role of the trimethylation of histone H3 on lysine 27 (H3K27me3) on fibroblast activation and fibrosis. Methods H3K27me3 was inhibited by 3-deazaneplanocin A (DZNep) in cultured fibroblasts and in two murine models of dermal fibrosis. Fibrosis was analysed by assessment of the dermal thickening, determination of the hydroxyproline content and by quantification of the numbers of myofibroblasts. The expression of fos-related antigen 2 (fra-2) was assessed by real-time PCR, western blot and immunohistochemistry and modulated by siRNA. Results Inhibition of H3K27me3 stimulated the release of collagen in cultured fibroblasts in a time and dose-dependent manner. Treatment with DZNep exacerbated fibrosis induced by bleomycin or by overexpression of a constitutively active transforming growth factor β receptor type I. Moreover, treatment with DZNep alone was sufficient to induce fibrosis. Inhibition of H3K27me3 induced the expression of the profibrotic transcription factor fra-2 in vitro and in vivo. Knockdown of fra-2 completely prevented the profibrotic effects of DZNep. Conclusions These data demonstrate a novel role of H3 Lys27 histone methylation in fibrosis. In contrast to other epigenetic modifications such as DNA methylation and histone acetylation, H3 Lys27 histone methylation acts as a negative regulator of fibroblast activation in vitro and in vivo by repressing the expression of fra-2.


Annals of the Rheumatic Diseases | 2013

Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling

Alfiya Distler; Lisa Deloch; Jingang Huang; Clara Dees; Neng-Yu Lin; Katrin Palumbo-Zerr; Christian Beyer; Alexander Weidemann; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Canonical Wnt signalling has recently emerged as a key mediator of fibroblast activation and tissue fibrosis in systemic sclerosis. Here, we investigated tankyrases as novel molecular targets for inhibition of canonical Wnt signalling in fibrotic diseases. Methods The antifibrotic effects of the tankyrase inhibitor XAV-939 or of siRNA-mediated knockdown of tankyrases were evaluated in the mouse models of bleomycin-induced dermal fibrosis and in experimental fibrosis induced by adenoviral overexpression of a constitutively active TGF-β receptor I (Ad-TBRI). Results Inactivation of tankyrases prevented the activation of canonical Wnt signalling in experimental fibrosis and reduced the nuclear accumulation of β-catenin and the mRNA levels of the target gene c-myc. Treatment with XAV-939 or siRNA-mediated knockdown of tankyrases in the skin effectively reduced bleomycin-induced dermal thickening, differentiation of resting fibroblasts into myofibroblasts and accumulation of collagen. Potent antifibrotic effects were also observed in Ad-TBRI driven skin fibrosis. Inhibition of tankyrases was not limited by local or systemic toxicity. Conclusions Inactivation of tankyrases effectively abrogated the activation of canonical Wnt signalling and demonstrated potent antifibrotic effects in well-tolerated doses. Thus, tankyrases might be candidates for targeted therapies in fibrotic diseases.


Annals of the Rheumatic Diseases | 2015

Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling

Christian Beyer; Christoph Zenzmaier; Katrin Palumbo-Zerr; Rossella Mancuso; Alfiya Distler; Clara Dees; Pawel Zerr; Jingang Huang; Christiane Maier; Milena L Pachowsky; Andreas Friebe; Peter Sandner; Oliver Distler; Georg Schett; Peter Berger; Jörg H W Distler

Objectives We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor β (TGFβ) signalling that mediates the antifibrotic effects of the sGC. Methods Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFβ. sGC knockout fibroblasts were isolated from sGCIfl/fl mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-β1 receptor. Results sGC stimulation inhibited TGFβ-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFβ-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFβ target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFβ-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFβ target gene expression, confirming that non-canonical TGFβ pathways mediate the antifibrotic sGC activity. Conclusions We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFβ signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Arthritis & Rheumatism | 2012

JAK‐2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis

Clara Dees; Michal Tomcik; Katrin Palumbo-Zerr; Alfiya Distler; Christian Beyer; Veronika Lang; Angelika Horn; Pawel Zerr; Jochen Zwerina; Kolja Gelse; Oliver Distler; Georg Schett; Jörg H W Distler

OBJECTIVE To investigate whether JAK-2 contributes to the pathologic activation of fibroblasts in patients with systemic sclerosis (SSc) and to evaluate the antifibrotic potential of JAK-2 inhibition for the treatment of SSc. METHODS Activation of JAK-2 in human skin and in experimental fibrosis was determined by immunohistochemical analysis. JAK-2 signaling was inhibited by the selective JAK-2 inhibitor TG101209 or by small interfering RNA. Bleomycin-induced dermal fibrosis in mice and TSK-1 mice were used to evaluate the antifibrotic potential of specific JAK-2 inhibition in vivo. RESULTS Increased activation of JAK-2 was detected in the skin of patients with SSc, particularly in fibroblasts. The activation of JAK-2 was dependent on transforming growth factor β (TGFβ) and persisted in cultured SSc fibroblasts. Inhibition of JAK-2 reduced basal collagen synthesis selectively in SSc fibroblasts but not in resting healthy dermal fibroblasts. Moreover, inhibition of JAK-2 prevented the stimulatory effects of TGFβ on fibroblasts. Treatment with TG101209 not only prevented bleomycin-induced fibrosis but also effectively reduced skin fibrosis in TSK-1 mice. CONCLUSION We demonstrated that JAK-2 is activated in a TGFβ-dependent manner in SSc. Considering the potent antifibrotic effects of JAK-2 inhibition, our study might have direct translational implications, because inhibitors of JAK-2 are currently being evaluated in clinical trials for myeloproliferative disorders and would also be available for evaluation in patients with SSc.


Annals of the Rheumatic Diseases | 2015

Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis

Jingang Huang; Christian Beyer; Katrin Palumbo-Zerr; Yun Zhang; Andreas Ramming; Alfiya Distler; Kolja Gelse; Oliver Distler; Georg Schett; Lutz Wollin; Jörg H W Distler

Background Nintedanib is a tyrosine kinase inhibitor that has recently been shown to slow disease progression in idiopathic pulmonary fibrosis in two replicate phase III clinical trials. The aim of this study was to analyse the antifibrotic effects of nintedanib in preclinical models of systemic sclerosis (SSc) and to provide a scientific background for clinical trials in SSc. Methods The effects of nintedanib on migration, proliferation, myofibroblast differentiation and release of extracellular matrix of dermal fibroblasts were analysed by microtitre tetrazolium and scratch assays, stress fibre staining, qPCR and SirCol assays. The antifibrotic effects of nintedanib were evaluated in bleomycin-induced skin fibrosis, in a murine sclerodermatous chronic graft-versus-host disease model and in tight-skin-1 mice. Results Nintedanib dose-dependently reduced platelet-derived growth factor-induced and transforming growth factor-β-induced proliferation and migration as well as myofibroblast differentiation and collagen release of dermal fibroblasts from patients with and healthy individuals. Nintedanib also inhibited the endogenous activation of SSc fibroblasts. Nintedanib prevented bleomycin-induced skin fibrosis in a dose-dependent manner and was also effective in the treatment of established fibrosis. Moreover, treatment with nintedanib ameliorated fibrosis in the chronic graft-versus-host disease model and in tight-skin-1 mice in well-tolerated doses. Conclusions We demonstrate that nintedanib effectively inhibits the endogenous as well as cytokine-induced activation of SSc fibroblasts and exerts potent antifibrotic effects in different complementary mouse models of SSc. These data have direct translational implications for clinical trials with nintedanib in SSc.

Collaboration


Dive into the Alfiya Distler's collaboration.

Top Co-Authors

Avatar

Georg Schett

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Beyer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Clara Dees

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jörg H W Distler

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Katrin Palumbo-Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Pawel Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Michal Tomcik

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Neng-Yu Lin

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

J. Distler

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge