Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg H W Distler is active.

Publication


Featured researches published by Jörg H W Distler.


Nature Communications | 2012

Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis

Alfiya Akhmetshina; Katrin Palumbo; Clara Dees; Christina Bergmann; Paulius Venalis; Pawel Zerr; Angelika Horn; Trayana Kireva; Christian Beyer; Jochen Zwerina; Holm Schneider; Anika Sadowski; Marc Oliver Riener; Ormond A. MacDougald; Oliver Distler; Georg Schett; Jörg H W Distler

The transforming growth factor-β (TGF-β) signalling pathway is a key mediator of fibroblast activation that drives the aberrant synthesis of extracellular matrix in fibrotic diseases. Here we demonstrate a novel link between transforming growth factor-β and the canonical Wnt pathway. TGF-β stimulates canonical Wnt signalling in a p38-dependent manner by decreasing the expression of the Wnt antagonist Dickkopf-1. Tissue samples from human fibrotic diseases show enhanced expression of Wnt proteins and decreased expression of Dickkopf-1. Activation of the canonical Wnt pathway stimulates fibroblasts in vitro and induces fibrosis in vivo. Transgenic overexpression of Dickkopf-1 ameliorates skin fibrosis induced by constitutively active TGF-β receptor type I signalling and also prevents fibrosis in other TGF-β-dependent animal models. These findings demonstrate that canonical Wnt signalling is necessary for TGF-β-mediated fibrosis and highlight a key role for the interaction of both pathways in the pathogenesis of fibrotic diseases.


Circulation Research | 2004

Uncontrolled Expression of Vascular Endothelial Growth Factor and Its Receptors Leads to Insufficient Skin Angiogenesis in Patients With Systemic Sclerosis

Oliver Distler; Jörg H W Distler; Annette Scheid; Till Acker; Astrid Hirth; Janine Rethage; Beat A. Michel; Ulf Müller-Ladner; Marco Matucci-Cerinic; Karl H. Plate; Max Gassmann

Systemic sclerosis (SSc) skin lesions are characterized by disturbed vessel morphology with enlarged capillaries and an overall reduction in capillary density, suggesting a deregulated, insufficient angiogenic response. It has been postulated that this phenomenon is due to reduced expression of the potent angiogenic factor vascular endothelial growth factor (VEGF). In contrast to this hypothesis, we demonstrate that the expression of both VEGF and its receptors VEGFR-1 and VEGFR-2 is dramatically upregulated in skin specimens of SSc patients throughout different disease stages. Interestingly, upregulation of VEGF was not mediated by hypoxia-inducible transcription factor-1 (HIF-1) as indicated by only a weak expression of the oxygen-sensitive &agr;-subunit of HIF-1 in the skin of SSc patients. This was unexpected on measuring low PO2 values in the SSc skin by using a polarographic oxygen microelectrode system. Considering our observation that PDGF and IL-1β costimulated VEGF expression, we propose that chronic and uncontrolled VEGF upregulation that is mediated by an orchestrated expression of cytokines rather than VEGF downregulation is the cause of the disturbed vessel morphology in the skin of SSc patients. Consequently, for therapeutic approaches aiming to improve tissue perfusion in these patients, a controlled expression and timely termination of VEGF signaling appears to be crucial for success of proangiogenic therapies.


Arthritis & Rheumatism | 2009

Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis

Alfiya Akhmetshina; Paulius Venalis; Clara Dees; Nicole Busch; Jochen Zwerina; Georg Schett; Oliver Distler; Jörg H W Distler

OBJECTIVE Imatinib is a small-molecule tyrosine kinase inhibitor capable of selective, dual inhibition of the transforming growth factor beta and platelet-derived growth factor (PDGF) pathways. Imatinib has previously been shown to prevent the development of inflammation-driven experimental fibrosis when treatment was initiated before administration of the profibrotic stimulus. The aim of this study was to confirm the efficacy of imatinib in a murine model of systemic sclerosis (SSc) that is less driven by inflammation and to investigate whether imatinib is also effective for the treatment of established fibrosis. METHODS The tight skin 1 (TSK-1) mouse model of SSc was used to evaluate the antifibrotic effects of imatinib in a genetic model of the later stages of SSc. In addition, the efficacy of imatinib for the treatment of preestablished fibrosis was analyzed in a modified model of bleomycin-induced dermal fibrosis in which the application of bleomycin was prolonged and the onset of treatment was late. RESULTS Treatment with imatinib reduced dermal and hypodermal thickening in TSK-1 mice and prevented the differentiation of resting fibroblasts into myofibroblasts. In the model of preestablished dermal fibrosis, imatinib not only stopped further progression of fibrosis but also induced regression of preexisting dermal fibrosis, with a reduction in dermal thickness below pretreatment levels. CONCLUSION These results indicate that combined inhibition of the tyrosine kinase c-Abl and PDGF receptor might be effective in the later, less inflammatory stages of SSc and for the treatment of established fibrosis. Thus, imatinib might be an interesting candidate for clinical trials in patients with longstanding disease and preexisting tissue fibrosis.


The FASEB Journal | 2008

Dual inhibition of c-abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis.

Alfiya Akhmetshina; Clara Dees; Margarita Pileckyte; Britta Maurer; Roland Axmann; Astrid Jüngel; Jochen Zwerina; Georg Schett; Oliver Distler; Jörg H W Distler

Abelson kinase (c‐abl) and platelet‐derived growth factor (PDGF) are key players in the pathogenesis of systemic sclerosis (SSc). The aim of the present study was to evaluate the antifibrotic potential of dasatinib and nilotinib, 2 novel inhibitors of c‐abl and PDGF, which are well tolerated and have recently been approved. Dasatinib and nilotinib dose‐dependently reduced the mRNA and protein levels of extracellular matrix proteins in human stimulated dermal fibroblasts from SSc patients (IC50 of 0.5–2.0 nM for dasatinib and 0.8–2.5 nM for nilotinib). In a mouse model of bleomycin‐induced dermal fibrosis, dasatinib and nilotinib potently reduced the dermal thickness, the number of myofibroblasts, and the collagen content of the skin in a dose‐dependent manner at well‐tolerated doses. These data indicate that dasatinib and nilotinib potently inhibit the synthesis of extracellular matrix in vitro and in vivo at biologically relevant concentrations. Thus, we provide the first evidence that dasatinib and nilotinib might be promising drugs for the treatment of patients with SSc.—Akhmetshina, A., Dees, C., Pileckyte, M., Maurer, B., Axmann, R., Jüngel, A., Zwerina, J., Gay, S., Schett, G., Distler, O., Distler, J. H. W. Dual inhibition of c‐abl and PDGF receptor signaling by dasatinib and nilotinib for the treatment of dermal fibrosis. FASEB J. 22, 2214–2222 (2008)


Annals of the Rheumatic Diseases | 2015

Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group

Suzana Jordan; Jörg H W Distler; Britta Maurer; Dörte Huscher; Jacob M. van Laar; Yannick Allanore; Oliver Distler; Tore K. Kvien; Paolo Airò; Juan José Alegre Sancho; Lidia Ananjeva; Codrina Michaela Ancuta; Martin Aringer; Alexandra Balbir-Gurman; Francesco Paolo Cantatore; Paola Caramaschi; Emmanuel Chatelus; Veronica Codullo; Dominique Farge-Bancel; Armando Gabrielli; Jörg Henes; Ilka Herrgott; Florenzo Iannone; Francesca Ingegnoli; Esthela Loyo; Marco Matucci-Cerinic; Walid Ahmed Abdel Atty Mohamed; Ulf Müller-Ladner; Øyvind Palm; Sergiu Popa

Objectives To assess the effects of Rituximab (RTX) on skin and lung fibrosis in patients with systemic sclerosis (SSc) belonging to the European Scleroderma Trial and Research (EUSTAR) cohort and using a nested case-control design. Methods Inclusion criteria were fulfilment of American College of Rheumatology classification criteria for SSc, treatment with RTX and availability of follow-up data. RTX-treated patients were matched with control patients from the EUSTAR database not treated with RTX. Matching parameters for skin/lung fibrosis were the modified Rodnan Skin Score (mRSS), forced vital capacity (FVC), follow-up duration, scleroderma subtype, disease duration and immunosuppressive co-treatment. The primary analysis was mRSS change from baseline to follow-up in the RTX group compared with the control group. Secondary analyses included change of FVC and safety measures. Results 63 patients treated with RTX were included in the analysis. The case-control analysis in patients with severe diffuse SSc showed that mRSS changes were larger in the RTX group versus matched controls (N=25; −24.0±5.2% vs −7.7±4.3%; p=0.03). Moreover, in RTX-treated patients, the mean mRSS was significantly reduced at follow-up compared with baseline (26.6±1.4 vs 20.3±1.8; p=0.0001). In addition, in patients with interstitial lung disease, RTX prevented significantly the further decline of FVC compared with matched controls (N=9; 0.4±4.4% vs −7.7±3.6%; p=0.02). Safety measures showed a good profile consistent with previous studies in autoimmune rheumatic diseases. Conclusions The comparison of RTX treated versus untreated matched-control SSc patients from the EUSTAR cohort demonstrated improvement of skin fibrosis and prevention of worsening lung fibrosis, supporting the therapeutic concept of B cell inhibition in SSc.


PLOS Genetics | 2011

Genome-Wide Scan Identifies TNIP1, PSORS1C1, and RHOB as Novel Risk Loci for Systemic Sclerosis

Yannick Allanore; Mohamad Saad; Philippe Dieudé; Jérôme Avouac; Jörg H W Distler; Philippe Amouyel; Marco Matucci-Cerinic; G. Riemekasten; Paolo Airò; Inga Melchers; E. Hachulla; Daniele Cusi; H.-Erich Wichmann; Julien Wipff; Jean Charles Lambert; Nicolas Hunzelmann; K. Tiev; Paola Caramaschi; Elisabeth Diot; Otylia Kowal-Bielecka; Gabriele Valentini; Luc Mouthon; László Czirják; Nemanja Damjanov; Erika Salvi; Costanza Conti; Martina Müller; Ulf Müller-Ladner; Valeria Riccieri; Barbara Ruiz

Systemic sclerosis (SSc) is an orphan, complex, inflammatory disease affecting the immune system and connective tissue. SSc stands out as a severely incapacitating and life-threatening inflammatory rheumatic disease, with a largely unknown pathogenesis. We have designed a two-stage genome-wide association study of SSc using case-control samples from France, Italy, Germany, and Northern Europe. The initial genome-wide scan was conducted in a French post quality-control sample of 564 cases and 1,776 controls, using almost 500 K SNPs. Two SNPs from the MHC region, together with the 6 loci outside MHC having at least one SNP with a P<10−5 were selected for follow-up analysis. These markers were genotyped in a post-QC replication sample of 1,682 SSc cases and 3,926 controls. The three top SNPs are in strong linkage disequilibrium and located on 6p21, in the HLA-DQB1 gene: rs9275224, P = 9.18×10−8, OR = 0.69, 95% CI [0.60–0.79]; rs6457617, P = 1.14×10−7 and rs9275245, P = 1.39×10−7. Within the MHC region, the next most associated SNP (rs3130573, P = 1.86×10−5, OR = 1.36 [1.18–1.56]) is located in the PSORS1C1 gene. Outside the MHC region, our GWAS analysis revealed 7 top SNPs (P<10−5) that spanned 6 independent genomic regions. Follow-up of the 17 top SNPs in an independent sample of 1,682 SSc and 3,926 controls showed associations at PSORS1C1 (overall P = 5.70×10−10, OR:1.25), TNIP1 (P = 4.68×10−9, OR:1.31), and RHOB loci (P = 3.17×10−6, OR:1.21). Because of its biological relevance, and previous reports of genetic association at this locus with connective tissue disorders, we investigated TNIP1 expression. A markedly reduced expression of the TNIP1 gene and also its protein product were observed both in lesional skin tissue and in cultured dermal fibroblasts from SSc patients. Furthermore, TNIP1 showed in vitro inhibitory effects on inflammatory cytokine-induced collagen production. The genetic signal of association with TNIP1 variants, together with tissular and cellular investigations, suggests that this pathway has a critical role in regulating autoimmunity and SSc pathogenesis.


Annals of the Rheumatic Diseases | 2010

Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression

Gisela Ruiz Heiland; Karin Zwerina; Wolfgang Baum; Trayana Kireva; Jörg H W Distler; Mario Grisanti; Frank Asuncion; Xiadong Li; Michael S. Ominsky; William G. Richards; Georg Schett; Jochen Zwerina

Introduction Inflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation. Methods TNF transgenic (hTNFtg) mice were treated with neutralising antibodies against TNF, Dkk-1 or a combination of both agents. Systemic bone architecture was analysed by bone histomorphometry. The expression of β-catenin, osteoprotegerin and osteocalcin was analysed. In vitro, primary osteoblasts were stimulated with TNF and analysed for their metabolic activity and expression of Dkk-1 and sclerostin. Sclerostin expression and osteocyte death upon Dkk-1 blockade were analysed in vivo. Results Neutralisation of Dkk-1 completely protected hTNFtg mice from inflammatory bone loss by preventing TNF-mediated impaired osteoblast function and enhanced osteoclast activity. These findings were accompanied by enhanced skeletal expression of β-catenin, osteocalcin and osteoprotegerin. In vitro, TNF rapidly increased Dkk-1 expression in primary osteoblasts and effectively blocked osteoblast differentiation. Moreover, blockade of Dkk-1 not only rescued impaired osteoblastogenesis but also neutralised TNF-mediated sclerostin expression in fully differentiated osteoblasts in vitro and in vivo. Conclusions These findings indicate that low bone formation and expression of Dkk-1 trigger inflammatory bone loss. Dkk-1 blocks osteoblast differentiation, induces sclerostin expression and leads to osteocyte death. Inhibition of Dkk-1 may thus be considered as a potent strategy to protect bone from inflammatory damage.


Autoimmunity | 2006

Microparticles as mediators of cellular cross-talk in inflammatory disease.

Jörg H W Distler; Lars C. Huber; Oliver Distler; David S. Pisetsky

Microparticles are a heterogeneous population of membrane-coated vesicles which can be released from virtually all cell types during activation or apoptosis. Release occurs from the cell surface in an exogenous budding process involving local rearrangement of the cytoskeleton. Given their origin, these particles can be identified by staining for cell surface markers and annexin V. As shown in in vitro studies, microparticles may represent a novel subcellular element for intercellular communication in inflammation. Thus, microparticles can transfer chemokine receptors and arachidonic acid between cells, activate complement, promote leukocyte rolling and stimulate the release of pro-inflammatory mediators. Under certain conditions, however, microparticles may also exert anti-inflammatory properties by inducing immune cell apoptosis and the production of anti-inflammatory mediators. Microparticles may play an important role in the pathogenesis of rheumatologic diseases as evidenced by their elevation in diseases such as systemic sclerosis (SSc), systemic vasculitis and antiphospholipid antibody syndrome and correlation with clinical events. A role in inflammatory arthritis is suggested by the finding that leukocyte-derived microparticles induce the production of matrix metalloproteinases and cytokines by synovial fibroblasts. Together, these findings point to novel signaling pathways of cellular cross-talk that may operate along the spectrum of soluble cytokines and mediators of direct cell–cell contact.


Annals of the Rheumatic Diseases | 2013

Autophagy regulates TNFα-mediated joint destruction in experimental arthritis

Neng-Yu Lin; Christian Beyer; Andreas Gießl; Trayana Kireva; Carina Scholtysek; Stefan Uderhardt; Luis E. Munoz; Clara Dees; Alfiya Distler; Stefan Wirtz; Gerhard Krönke; Brian Spencer; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Autophagy is a homeostatic process to recycle dispensable and damaged cell organelles. Dysregulation of autophagic pathways has recently been implicated in the pathogenesis of various diseases. Here, we investigated the role of autophagy during joint destruction in arthritis. Methods Autophagy in osteoclasts was analysed in vitro and ex vivo by transmission electron microscopy, Western blotting and immunohistochemistry for Beclin1 and Atg7. Small molecule inhibitors, LysMCre-mediated knockout of Atg7 and lentiviral overexpression of Beclin1 were used to modulate autophagy in vitro and in vivo. Osteoclast differentiation markers were quantified by real-time PCR. The extent of bone and cartilage destruction was analysed in human tumour necrosis factor α transgenic (hTNFα tg) mice after adoptive transfer with myeloid specific Atg7-deficient bone marrow. Results Autophagy was activated in osteoclasts of human rheumatoid arthritis (RA) showing increased expression of Beclin1 and Atg7. TNFα potently induced the expression of autophagy-related genes and activated autophagy in vitro and in vivo. Activation of autophagy by overexpression of Beclin1-induced osteoclastogenesis and enhanced the resorptive capacity of cultured osteoclasts, whereas pharmacologic or genetic inactivation of autophagy prevented osteoclast differentiation. Arthritic hTNFα tg mice transplanted with Atg7fl/fl×LysMCre+ bone marrow cells (BMC) showed reduced numbers of osteoclasts and were protected from TNFα-induced bone erosion, proteoglycan loss and chondrocyte death. Conclusions These findings demonstrate that autophagy is activated in RA in a TNFα-dependent manner and regulates osteoclast differentiation and bone resorption. We thus provide evidence for a central role of autophagy in joint destruction in RA.


Annals of the Rheumatic Diseases | 2012

β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis

Christian Beyer; Amelie Schramm; Alfiya Akhmetshina; Clara Dees; Trayana Kireva; Kolja Gelse; Sonali Sonnylal; Benoit de Crombrugghe; Makoto M. Taketo; Oliver Distler; Georg Schett; Jörg H W Distler

Objectives Pathologic fibroblast activation drives fibrosis of the skin and internal organs in patients with systemic sclerosis (SSc). β-catenin is an integral part of adherens junctions and a central component of canonical Wnt signaling. Here, the authors addressed the role of β-catenin in fibroblasts for the development of SSc dermal fibrosis. Methods Nuclear accumulation of β-catenin in fibroblasts was assessed by triple staining for β-catenin, prolyl-4-hydroxylase-β and 4′,6-diamidino-2-phenylindole (DAPI). The expression of Wnt proteins in the skin was analysed by real-time PCR and immunohistochemistry. Mice with fibroblast-specific stabilisation or fibroblast-specific depletion were used to evaluate the role of β-catenin in fibrosis. Results The auhors found significantly increased nuclear levels of β-catenin in fibroblasts in SSc skin compared to fibroblasts in the skin of healthy individuals. The accumulation of β-catenin resulted from increased expression of Wnt-1 and Wnt-10b in SSc. The authors further showed that the nuclear accumulation of β-catenin has direct implications for the development of fibrosis: Mice with fibroblast-specific stabilisation of β-catenin rapidly developed fibrosis within 2 weeks with dermal thickening, accumulation of collagen and differentiation of resting fibroblasts into myofibroblasts. By contrast, fibroblast-specific deletion of β-catenin significantly reduced bleomycin-induced dermal fibrosis. Conclusions The present study findings identify β-catenin as a key player of fibroblast activation and tissue fibrosis in SSc. Although further translational studies are necessary to test the efficacy and tolerability of β-catenin/Wnt inhibition in SSc, the present findings may have clinical implications, because selective inhibitors of β-catenin/Wnt signaling have recently entered clinical trials.

Collaboration


Dive into the Jörg H W Distler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Schett

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian Beyer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Clara Dees

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alfiya Distler

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Pawel Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Jochen Zwerina

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alfiya Akhmetshina

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Katrin Palumbo-Zerr

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Michal Tomcik

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge