Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfonso Salvatore Frenda is active.

Publication


Featured researches published by Alfonso Salvatore Frenda.


PLOS ONE | 2014

Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

Sergio Saia; Gaetano Amato; Alfonso Salvatore Frenda; Dario Giambalvo; Paolo Ruisi

Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.


Frontiers in Plant Science | 2015

Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat.

Sergio Saia; Vito Rappa; Paolo Ruisi; Maria Rosa Abenavoli; Francesco Sunseri; Dario Giambalvo; Alfonso Salvatore Frenda; Federico Martinelli

In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4+) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3- transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem.


Plant and Soil | 2011

Forage production, N uptake, N2 fixation, and N recovery of berseem clover grown in pure stand and in mixture with annual ryegrass under different managements

Dario Giambalvo; Paolo Ruisi; Giuseppe Di Miceli; Alfonso Salvatore Frenda; Gaetano Amato

In Mediterranean countries, forage grasses and legumes are commonly grown in mixture because of their ability to increase herbage yield and quality compared with monocrop systems. However, the benefits of intercropping over a monocrop system are not always realized because the efficiency of a grass–legume mixture is strongly affected by agronomic factors. The present study evaluated productivity, N2 fixation, N transfer, and N recovery of berseem clover (Trifolium alexandrinum) grown in pure stand and in mixture with annual ryegrass (Lolium multiflorum) under high or low defoliation frequencies and varying plant arrangements (sowing in the same row or in alternating rows). On average, the berseem–ryegrass mixtures resulted in a greater yield and N yield than the monocrops. When mixed together, ryegrass was more efficient than berseem at absorbing soil N, increasing the reliance of berseem on N2 fixation. Both defoliation management and plant arrangement affected forage yield and the quality of the mixture, modifying the proportion of the two components, the N content of the forage, and the symbiotic N2 fixation of the legume. Reducing the proximity between plants of the two species may benefit the weaker component of the mixture. No apparent transfer of fixed N from berseem to ryegrass was detected.


Frontiers in Plant Science | 2015

Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of interspecific competition

Paolo Ruisi; Benedetto Frangipane; Gaetano Amato; Alfonso Salvatore Frenda; Antonella Plaia; Dario Giambalvo; Sergio Saia

Choosing genotypes with a high capacity for taking up nitrogen (N) from the soil and the ability to efficiently compete with weeds for this nutrient is essential to increasing the sustainability of cropping systems that are less dependent on auxiliary inputs. This research aimed to verify whether differences exist in N uptake and N fertilizer recovery capacity among wheat genotypes and, if so, whether these differences are related to a different competitive ability against weeds of wheat genotypes. To this end, 12 genotypes, varying widely in morphological traits and year of release, were grown in the presence or absence of interspecific competition (using Avena sativa L. as a surrogate weed). Isotopic tracer 15N was used to measure the fertilizer N uptake efficiencies of the wheat genotypes and weed. A field experiment, a split-plot design with four replications, was conducted during two consecutive growing seasons in a typical Mediterranean environment. In the absence of interspecific competition, few differences in either total N uptake (range: 98–112 kg N ha−1) or the 15N fertilizer recovery fraction (range: 30.0–36.7%) were observed among the wheat genotypes. The presence of competition, compared to competitor-free conditions, resulted in reductions in grain yield (49%), total N uptake (29%), and an 15N fertilizer recovery fraction (32%) that were on average markedly higher in modern varieties than in old ones. Both biomass and grain reductions were strongly related to the biomass of the competitor (correlation coefficients > 0.95), which ranged from 135 to 573 g m−2. Variations in both grain and biomass yield due to interspecific competition were significantly correlated with percentage of soil cover and leaf area at tillering, plant height at heading, and total N uptake, thus highlighting that the ability to take up N from the soil played a certain role in determining the different competitive abilities against weed of the genotypes.


Weed Science | 2013

The Critical Period of Weed Control in Faba Bean and Chickpea in Mediterranean Areas

Alfonso Salvatore Frenda; Paolo Ruisi; Sergio Saia; Benedetto Frangipane; Giuseppe Di Miceli; Gaetano Amato; Dario Giambalvo

Abstract Weeds are often the major biological constraint to growing legume crops successfully, and an understanding of the critical period of weed control (CPWC) is important for developing environmentally sustainable weed management practices to prevent unacceptable yield loss. Therefore, we carried out two field experiments to identify the CPWC for two grain legume crops traditionally grown in Mediterranean areas: chickpea and faba bean. The experiments were conducted at two sites both located in the Sicilian inland (Italy). In chickpea, when weeds were left to compete with the crop for the whole cycle, the grain yield reduction was on average about 85% of the weed-free yield, whereas in faba bean the reduction was less severe (on average about 60% of the weed-free yield). The onset of the CPWC at a 5% yield loss level varied by species, occurring later in faba bean than in chickpea (on average, 261 and 428 growing degree days after emergence for chickpea and faba bean, respectively). In both species, the end of the CPWC occurred at the early full-flowering stage when the canopy of each crop enclosed the interrow space. On the whole, the CPWC at a 5% yield loss level ranged from 50 to 69 d in chickpea and from 28 to 33 d in faba bean. The results highlight the fact that faba bean has a higher competitive ability against weeds than chickpea. This could be attributable both to more vigorous early growth and to the plants greater height, both factors related to a greater shading ability and, consequently, to a better ability to suppress weeds. Nomenclature: Faba bean, Vicia faba L. var. minor; chickpea, Cicer arietinum L.


Animal | 2011

Effects of feeding green forage of sulla (Hedysarum coronarium L.) on lamb growth and carcass and meat quality

Adriana Bonanno; G. Di Miceli; A. Di Grigoli; Alfonso Salvatore Frenda; Gabriele Tornambè; Dario Giambalvo; Gaetano Amato

The nutritional effects of sulla (Hedysarum coronarium L.) forage containing condensed tannins (CT) on growth of lambs, and carcass and meat quality were investigated. Thirty-two male Comisana lambs aged 100 ± 8 days weighing 19.0 ± 2.8 kg were fed fresh forage of sulla or CT-free annual ryegrass (Lolium multiflorum Lam. subsp. Wersterwoldicum) for 49 days until slaughter; in addition, each lamb was supplied with 200 g/days of concentrate. Eight lambs per diet had been previously treated with anthelmintic drugs to remove nematode parasites. Measurements of BW and feed intake, and counts of faecal nematode eggs were made. Carcass parameters were recorded after slaughter, and tissue components of the hind leg were determined. Longissimus dorsi meat was evaluated for pH, colour, thawing and cooking losses, Warner-Bratzler shear force, chemical composition and sensory properties based on triangle tests. Relative to ryegrass-fed lambs, sulla-fed lambs had significantly greater dry matter (DM) and protein intake, a more favourable feed conversion ratio, and superior growth rate, final BW at 150 days of age, carcass weight, yield and fatness. These results were attributed to the high protein and non-structural carbohydrate content of sulla, and also to the moderate CT content of sulla (16.7 and 20.3 g/kg of DM in offered and consumed sulla forage, respectively). Anthelmintic treatment did not affect lamb growth, as the level of parasitic infection (initial and final) was low. The physical, chemical and sensory properties of the lamb meat were not influenced by diet.


Functional & Integrative Genomics | 2017

Identification and characterization of durum wheat microRNAs in leaf and root tissues

Veronica Fileccia; Edoardo Bertolini; Paolo Ruisi; Dario Giambalvo; Alfonso Salvatore Frenda; Gina Cannarozzi; Zerihun Tadele; Cristina Crosatti; Federico Martinelli

MicroRNAs are a class of post-transcriptional regulators of plant developmental and physiological processes and responses to environmental stresses. Here, we present the study regarding the annotation and characterization of MIR genes conducted in durum wheat. We characterized the miRNAome of leaf and root tissues at tillering stage under two environmental conditions: irrigated with 100% (control) and 55% of evapotranspiration (early water stress). In total, 90 microRNAs were identified, of which 32 were classified as putative novel and species-specific miRNAs. In addition, seven microRNA homeologous groups were identified in each of the two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, miR319, and miR167, were the most expressed in leaves in comparison to roots. Putative microRNA targets were predicted for both five and three prime sequences derived from the stem-loop of the MIR gene. Gene ontology analysis showed significant overrepresented gene categories in microRNA targets belonging to transcription factors, phenylpropanoids, oxydases, and lipid binding-protein. This work represents one of the first genome wide characterization of MIR genes in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification of microRNAs together with the analysis of their expression profiles is a well-accepted starting point leading to a better comprehension of the role of MIR genes in the genus Triticum.


PLOS ONE | 2017

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

Veronica Fileccia; Paolo Ruisi; Rosolino Ingraffia; Giambalvo D; Alfonso Salvatore Frenda; Federico Martinelli

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture of spores of Rhizophagus irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae). Results indicate that AM symbiosis can alleviate the detrimental effects of salt stress on the growth of durum wheat plants. In fact, under salt stress conditions mycorrhizal plants produced more aboveground and root biomass, had higher N uptake and aboveground N concentration, and showed greater stability of plasma membranes compared to non-mycorrhizal plants. Inoculation with AM fungi had no effect on the expression of the N transporter genes AMT1.1, AMT1.2, and NAR2.2, either under no-stress or salt stress conditions, probably due to the fact that plants were grown under optimal N conditions; on the contrary, NRT1.1 was always upregulated by AM symbiosis. Moreover, the level of expression of the drought stress-related genes AQP1, AQP4, PIP1, DREB5, and DHN15.3 observed in the mycorrhizal stressed plants was markedly lower than that observed in the non-mycorrhizal stressed plants and very close to that observed in the non-stressed plants. Our hypothesis is that, in the present study, AM symbiosis did not increase the plant tolerance to salt stress but instead generated a condition in which plants were subjected to a level of salt stress lower than that of non-mycorrhizal plants.


Italian Journal of Animal Science | 2009

Energy use efficiency of livestock farms in a mountain area of Sicily

Dario Giambalvo; Giovanni Alfieri; Gaetano Amato; Alfonso Salvatore Frenda; Placido Iudicello; Luigi Stringi

Abstract The research aimed to evaluate the performance (in terms of energy) of livestock farms located in a Mediterranean mountain area and characterized by different stocking rates. Farm data were collected from in-person interviews of farmers of 58 farms representative of the livestock farms of the Madonie and Nebrodi mountains area (Sicily, Italy), including several parameters related to farm characteristics, animal, crop and pasture management. The farm parameters were used to calculate input and output energy values from which agroecosystem performance indicators were derived. Increasing stocking rate corresponded to a more than proportional increase in total inputs per unit area because of a greater farm dependence on external energy sources derived from agriculture (mainly for concentrate feed) and to a lower energy use efficiency. The indicator of dependence on non-renewable energy sources was, on average, very low irrespective of stocking rate. As stocking rate increased the farm autonomy indicator fell and the immediate removal indicator increased. Overall, the best agroecosystem performance in terms of energy was found on farms with lower stocking rates, higher proportions of permanent pastures to total farm area, and longer periods of exclusive grazing.


Agronomy Journal | 2010

Nitrogen Use Efficiency and Nitrogen Fertilizer Recovery of Durum Wheat Genotypes as Affected by Interspecific Competition

Dario Giambalvo; Paolo Ruisi; Giuseppe Di Miceli; Alfonso Salvatore Frenda; Gaetano Amato

Collaboration


Dive into the Alfonso Salvatore Frenda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Belocchi

Consiglio per la ricerca e la sperimentazione in agricoltura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge