Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfred Driessen is active.

Publication


Featured researches published by Alfred Driessen.


Optics Letters | 2002

Sensor based on an integrated optical microcavity

E. Krioukov; D.J.W. Klunder; Alfred Driessen; Jan Greve; Cornelis Otto

A novel integrated optical sensor based on a cylindrical microcavity (MC) is proposed. A MC sustains so-called whispering-gallery modes (WGMs), in which the energy of the optical field can be efficiently stored. By monitoring the scattering intensity from the MC, one can detect minute changes in the refractive index of the WGM, for instance, as a result of analyte adsorption. Measurement of a change in refractive index of as little as 10(-4) is demonstrated experimentally. The MC-based integrated optical sensor may have a size of approximately 8mum , and it is rugged and inexpensive.


Journal of Lightwave Technology | 1999

Design, tolerance analysis, and fabrication of silicon oxynitride based planar optical waveguides for communication devices

Kerstin Worhoff; Paul Lambeck; Alfred Driessen

Planar optical waveguiding structures for application in communication networks are highly demanding with respect to low insertion loss, efficient fiber-to-chip coupling, polarization independent operation, high integration density, reliable fabrication, and last but not least cost efficiency. When applying silicon oxynitride, which is a very versatile material, planar waveguiding structures can be designed having the potential of meeting all those requirements. In this paper, we will describe the design of such a waveguiding structure, demonstrate the practical feasibility of realizing this structure and discuss the preliminary measurement results.


Applied Physics Letters | 1997

Experimental study of integrated-optics microcavity resonators: Toward an all-optical switching device

F.C. Blom; D. R. van Dijk; Hugo Hoekstra; Alfred Driessen; Th.J.A. Popma

An integrated all-optical switch based on a high-Q nonlinear cylindrical microcavity resonator is proposed. The switch consists of single mode planar waveguides that allow coupling light in and out to a microresonator, exhibiting whispering gallery modes. Due to the high Q factor and the small dimensions, fast switching at low power is feasible for devices based on presently available nonlinear polymers as the active material. In this approach, the transmission of an integrated optical waveguide close to a microcavity has been measured and related to the resonances of the cylindrical microcavity.


Journal of Physics D | 2007

Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides

R. Dekker; N Usechak; Michael Först; Alfred Driessen

In this review we present an overview of the progress made in recent years in the field of integrated silicon-on-insulator (SOI) waveguide photonics with a strong emphasis on third-order nonlinear optical processes. Although the focus is on simple waveguide structures the utilization of complex structures such as microring resonators and photonic crystal structures is briefly discussed as well. Several fabrication methods are explained and methods which improve optical loss, coupling efficiency and polarization dependence are presented. As the demand for bandwidth increases communication systems are forced to use higher bit rates to accommodate the load. A consequence of high-bit-rate systems is that they require short pulses where the importance of waveguide dispersion tailoring becomes increasingly important. The impact of short pulses on the efficiency of all-optical processes is discussed and recent accomplishments in this field are presented. Numerical results of femtosecond, picosecond and nanosecond pulse propagation in SOI waveguides are compared to provide an insight into the physical processes that dominate at these different time scales. In this work we focus on two-photon absorption (TPA), free-carrier absorption (FCA), plasma dispersion and the optical Kerr effect. After describing these nonlinear effects, some other important all-optical processes based on plasma dispersion and the Kerr effect are described, namely cross-absorption modulation (XAM), self-phase modulation (SPM), cross-phase modulation (XPM), four-wave mixing (FWM) and stimulated Raman scattering (SRS). The latter provides the best hope for practical and/or commercial applications and finds its use in amplification and lasing. Furthermore, we present some guidelines for efficient numerical modelling of propagation in SOI waveguides. This review is a good starting point for those who are new in this hot and rapidly emerging field and gives an overview of important considerations that need to be taken into account when designing, fabricating and characterizing SOI waveguides for ultrafast third-order nonlinear all-optical processing.


Optics Express | 2006

Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 μm femtosecond pulses

R. Dekker; Alfred Driessen; Thorsten Wahlbrink; C. Moormann; J. Niehusmann; Michael Först

The propagation of 300 femtosecond optical pulses in Silicon-on Insulator waveguides has been studied by means of a pump-probe set-up. The ultrafast pulses allowed the observation of large Kerr-induced red and blue shifts (9nm and 15nm, respectively) of the probe signal depending on the delay between pump (1554nm) and probe (1683nm) pulses. A numerical model taking into account the Kerr effect, Two Photon Absorption and Free Carrier Absorption is presented and provides good agreement with our experimental data and data in literature. A microring resonator based device is proposed that exploits the observed wavelength shift for sub-picosecond all-optical switching.


Sensors and Actuators A-physical | 1999

Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

Kerstin Worhoff; Alfred Driessen; Paul Lambeck; L.T.H. Hilderink; Petrus W.C. Linders; T.J.A. Popma

Silicon Oxynitride (SiON) layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition (PECVD). The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness (δd<1%), high homogeneity of the refractive index (Δn=2–7×10−4) and good reproducibility of the layer parameters. The optical losses of slab-type waveguides is determined to be as low as 0.2 dB/cm at 632.8 nm wavelength. Due to absorption of N–H and Si–H vibrational overtones, the optical losses in the third telecommunication window, around 1550 nm, is increased to about 2 dB/cm for low index layers. By an anneal step, however, the hydrogen content of the films can be reduced as is confirmed by IR-spectroscopy and the optical losses decrease to below 0.2 dB/cm. Based on the optimized PECVD SiON technology, a layer structure fulfilling the strong requirements of telecommunication devices, is designed for operation at 1550 nm wavelength. This structure, consisting of a SiON core layer (n=1.4857) surrounded by thick oxide cladding layers (n=1.4637), has the potential for realization of channel waveguides allowing for low-loss bends with a small bending radius and high fiber-to-chip coupling efficiency.


Journal of The Electrochemical Society | 2002

Silicon Oxynitride A Versatile Material for Integrated Optics Applications

Kerstin Worhoff; L.T.H. Hilderink; Alfred Driessen; Paul Lambeck

Silicon oxynitride is a very attractive material for integrated optics application, because of its excellent optical properties (~e.g. optical loss below 0.2 dB/cm!, the large refractive index range ~between 1.45 for silicon oxide and 2.0 for silicon nitride), and last but not least, the availability of reliable, low-cost fabrication technologies. Since good uniformity and reproducibility of the layers is extremely important for integrated optics applications, we have optimized the plasma-enhanced chemical vapor deposition and low-pressure chemical vapor deposition technologies of silicon oxynitride with respect to these requirements. Over a 50x50 mm area on a 3 inch wafer, an inhomogeneity of the refractive index of Dn<5E-3 and a nonuniformity of the layer thickness of < 1% can be obtained. Furthermore, new challenges such as the conditioning of the reactor, in order to guarantee process reproducibility in the same order of magnitude, are discussed. The high optical loss of silicon oxynitride in the third telecommunication window (wavelength range 1530-1605 nm), which is caused by the overtones of the Si-H and N-H bonds, was decreased by thermal treatment. Silicon oxynitride waveguides having a refractive index of 1.48 and an optical loss below 0.2 dB/cm (at 1550 nm) were realized.


IEEE Photonics Technology Letters | 2005

Reconfigurable optical add-drop multiplexer using microring resonators

E.J. Klein; D.H. Geuzebroek; Henry Kelderman; G. Sengo; Nigel Baker; Alfred Driessen

We report a reconfigurable four-channel optical add-drop multiplexer for use in access networks. The optical add-drop multiplexer (OADM) is based on vertically coupled thermally tunable Si/sub 3/N/sub 4/--SiO/sub 2/ microring resonators (MRs) and has been realized on a footprint of 0.25 mm/sup 2/. Individual MRs in the OADM can be tuned across the full free-spectral range of 4.18 nm and have a 3-dB bandwidth of 50 GHz.


Applied Physics Letters | 2004

Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides

R. Dekker; D.J.W. Klunder; A. Borreman; Mart B. J. Diemeer; Kerstin Worhoff; Alfred Driessen; Jan W. Stouwdam; F.C.J.M. van Veggel

We report experiments which show evidence that stimulated emission at 863 nm takes place in hybrid monomode Si3N4 waveguides where LaF3 :Nd nanoparticle-doped polymethylmethacrylate (PMMA) was used as a top cladding material. Furthermore, optical gain at 1319 nm in LaF3:Nd nanoparticle dispersed PMMA s0.1 dB/cmd and photodefinable epoxy (Microchem SU-8) multimode waveguides has been observed at pump powers below 10 mW. This class of composite materials based on polymers with dispersed nanoparticles shows promising properties for planar optical amplifiers. Simulation showed that optical gain in the order of 10 dB can be achieved at 100 mW pump power in a 20 cm long monomode waveguide.


Optics Letters | 2002

Integrated optical microcavities for enhanced evanescent-wave spectroscopy

E. Krioukov; D.J.W. Klunder; Alfred Driessen; Jan Greve; Cornelis Otto

The use of integrated optical microcavities (MCs) for enhanced optical spectroscopy and sensing is investigated. The MC sustains high- Q whispering-gallery modes, in which the energy of the optical field can be efficiently stored. The resulting enhanced field can be used to probe fluorescent molecules in the cladding of the MC. Enhanced fluorescence excitation with an integrated optical MC is demonstrated experimentally for what is believed to be the first time. A comparison between a MC and a straight waveguide shows that the MC may give an increase of 40 times in fluorescence excitation. Because of the ultrasmall size of the MC (15 microm in radius), the fluorescence signal may be observed from only 20 molecules in the cladding.

Collaboration


Dive into the Alfred Driessen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Sengo

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Hugo Hoekstra

MESA+ Institute for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar

Markus Pollnau

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge