Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfredo Cruz-Ramírez is active.

Publication


Featured researches published by Alfredo Cruz-Ramírez.


Current Opinion in Plant Biology | 2003

The role of nutrient availability in regulating root architecture

José López-Bucio; Alfredo Cruz-Ramírez; Luis Herrera-Estrella

The ability of plants to respond appropriately to nutrient availability is of fundamental importance for their adaptation to the environment. Nutrients such as nitrate, phosphate, sulfate and iron act as signals that can be perceived. These signals trigger molecular mechanisms that modify cell division and cell differentiation processes within the root and have a profound impact on root system architecture. Important developmental processes, such as root-hair formation, primary root growth and lateral root formation, are particularly sensitive to changes in the internal and external concentration of nutrients. The responses of root architecture to nutrients can be modified by plant growth regulators, such as auxins, cytokinins and ethylene, suggesting that the nutritional control of root development may be mediated by changes in hormone synthesis, transport or sensitivity. Recent information points to the existence of nutrient-specific signal transduction pathways that interpret the external and internal concentrations of nutrients to modify root development. Progress in this field has led to the cloning of regulatory genes that play pivotal roles in nutrient-induced changes to root development.


The Plant Cell | 2008

Phosphate Availability Alters Lateral Root Development in Arabidopsis by Modulating Auxin Sensitivity via a Mechanism Involving the TIR1 Auxin Receptor

Claudia-Anahí Pérez-Torres; José López-Bucio; Alfredo Cruz-Ramírez; Enrique Ibarra-Laclette; Sunethra Dharmasiri; Mark Estelle; Luis Herrera-Estrella

Lateral root development is an important morphogenetic process in plants, which allows the modulation root architecture and substantially determines the plants efficiency for water and nutrient uptake. Postembryonic root development is under the control of both endogenous developmental programs and environmental stimuli. Nutrient availability plays a major role among environmental signals that modulate root development. Phosphate (Pi) limitation is a constraint for plant growth in many natural and agricultural ecosystems. Plants possess Pi-sensing mechanisms that enable them to respond and adapt to conditions of limited Pi supply, including increased formation and growth of lateral roots. Root developmental modifications are mainly mediated by the plant hormone auxin. Recently we showed that the alteration of root system architecture under Pi-starvation may be mediated by modifications in auxin sensitivity in root cells via a mechanism involving the TIR1 auxin receptor. In this addendum, we provide additional novel evidence indicating that the low Pi pathway involves changes in cell cycle gene expression. It was found that Pi deprivation increases the expression of CDKA, E2Fa, Dp-E2F and CyCD3. In particular, E2Fa, Dp-E2F and CyCD3 genes were specifically upregulated by auxin in Pi-deprived Arabidopsis seedlings that were treated with the auxin transport inhibitor NPA, indicating that cell cycle modulation by low Pi signaling is independent of auxin transport and dependent on auxin sensitivity in the root.The survival of plants, as sessile organisms, depends on a series of postembryonic developmental events that determine the final architecture of plants and allow them to contend with a continuously changing environment. Modulation of cell differentiation and organ formation by environmental signals has not been studied in detail. Here, we report that alterations in the pattern of lateral root (LR) formation and emergence in response to phosphate (Pi) availability is mediated by changes in auxin sensitivity in Arabidopsis thaliana roots. These changes alter the expression of auxin-responsive genes and stimulate pericycle cells to proliferate. Modulation of auxin sensitivity by Pi was found to depend on the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and the transcription factor AUXIN RESPONSE FACTOR19 (ARF19). We determined that Pi deprivation increases the expression of TIR1 in Arabidopsis seedlings and causes AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) auxin response repressors to be degraded. Based on our results, we propose a model in which auxin sensitivity is enhanced in Pi-deprived plants by an increased expression of TIR1, which accelerates the degradation of AUX/IAA proteins, thereby unshackling ARF transcription factors that activate/repress genes involved in LR formation and emergence.


The Plant Cell | 2004

The xipotl Mutant of Arabidopsis Reveals a Critical Role for Phospholipid Metabolism in Root System Development and Epidermal Cell Integrity

Alfredo Cruz-Ramírez; José López-Bucio; Gabriel Ramírez-Pimentel; Andrés Zurita-Silva; Lenin Sánchez-Calderón; Enrique Ramírez-Chávez; Emmanuel González-Ortega; Luis Herrera-Estrella

Phosphocholine (PCho) is an essential metabolite for plant development because it is the precursor for the biosynthesis of phosphatidylcholine, which is the major lipid component in plant cell membranes. The main step in PCho biosynthesis in Arabidopsis thaliana is the triple, sequential N-methylation of phosphoethanolamine, catalyzed by S-adenosyl-l-methionine:phosphoethanolamine N-methyltransferase (PEAMT). In screenings performed to isolate Arabidopsis mutants with altered root system architecture, a T-DNA mutagenized line showing remarkable alterations in root development was isolated. At the seedling stage, the mutant phenotype is characterized by a short primary root, a high number of lateral roots, and short epidermal cells with aberrant morphology. Genetic and biochemical characterization of this mutant showed that the T-DNA was inserted at the At3g18000 locus (XIPOTL1), which encodes PEAMT (XIPOTL1). Further analyses revealed that inhibition of PCho biosynthesis in xpl1 mutants not only alters several root developmental traits but also induces cell death in root epidermal cells. Epidermal cell death could be reversed by phosphatidic acid treatment. Taken together, our results suggest that molecules produced downstream of the PCho biosynthesis pathway play key roles in root development and act as signals for cell integrity.


PLOS ONE | 2012

Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members

Marco Antonio Leyva-González; Enrique Ibarra-Laclette; Alfredo Cruz-Ramírez; Luis Herrera-Estrella

Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation

Lenin Yong-Villalobos; Sandra Isabel González-Morales; Kazimierz Wrobel; Dolores Gutiérrez-Alanís; Sergio Alan Cervantes-Pérez; Corina Hayano-Kanashiro; Araceli Oropeza-Aburto; Alfredo Cruz-Ramírez; Octavio Martínez; Luis Herrera-Estrella

Significance Significant progress has been achieved in our understanding of plant adaptive responses to ensure growth and reproduction in soils with low phosphate (Pi) availability. However, the potential role of epigenetic mechanisms in the modulation of these responses remains largely unknown. In this article, we describe dynamic changes in global DNA methylation patterns that occur in Arabidopsis plants exposed to low Pi availability; these changes are associated with the onset of Pi starvation responses. We show that the expression of a subset of low Pi-responsive genes is modulated by methylation changes and that DNA methylation is required for the proper establishment of developmental and molecular responses to Pi starvation. Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation–responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.


Journal of Experimental Botany | 2012

Translational regulation of Arabidopsis XIPOTL1 is modulated by phosphocholine levels via the phylogenetically conserved upstream open reading frame 30

Fulgencio Alatorre-Cobos; Alfredo Cruz-Ramírez; Celine A. Hayden; Claudia-Anahí Pérez-Torres; Anne-Laure Chauvin; Enrique Ibarra-Laclette; Erika Alva-Cortés; Richard A. Jorgensen; Luis Herrera-Estrella

In Arabidopsis thaliana, XIPOTL1 encodes a phosphoethanolamine N-methyltransferase with a central role in phosphatidylcholine biosynthesis via the methylation pathway. To gain further insights into the mechanisms that regulate XIPOTL1 expression, the effect of upstream open reading frame 30 (uORF30) on the translation of the major ORF (mORF) in the presence or absence of endogenous choline (Cho) or phosphocholine (PCho) was analysed in Arabidopsis seedlings. Dose-response assays with Cho or PCho revealed that both metabolites at physiological concentrations are able to induce the translational repression of a mORF located downstream of the intact uORF30, without significantly altering its mRNA levels. PCho profiles showed a correlation between increased endogenous PCho levels and translation efficiency of a uORF30-containing mORF, while no correlation was detectable with Cho levels. Enhanced expression of a uORF30-containing mORF and decreased PCho levels were observed in the xipotl1 mutant background relative to wild type, suggesting that PCho is the true mediator of uORF30-driven translational repression. In Arabidopsis, endogenous PCho content increases during plant development and affects root meristem size, cell division, and cell elongation. Because XIPOTL1 is preferentially expressed in Arabidopsis root tips, higher PCho levels are found in roots than shoots, and there is a higher sensitivity of this tissue to translational uORF30-mediated control, it is proposed that root tips are the main site for PCho biosynthesis in Arabidopsis.


Journal of Experimental Botany | 2012

Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element

Araceli Oropeza-Aburto; Alfredo Cruz-Ramírez; Gustavo J. Acevedo-Hernández; Claudia-Anahí Pérez-Torres; Juan Caballero-Pérez; Luis Herrera-Estrella

Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element.


Developmental Cell | 2017

Phosphate Starvation-Dependent Iron Mobilization Induces CLE14 Expression to Trigger Root Meristem Differentiation through CLV2/PEPR2 Signaling

Dolores Gutiérrez-Alanís; Lenin Yong-Villalobos; Pedro Jiménez-Sandoval; Fulgencio Alatorre-Cobos; Araceli Oropeza-Aburto; Javier Mora‐Macías; Federico Sánchez-Rodríguez; Alfredo Cruz-Ramírez; Luis Herrera-Estrella

Low inorganic phosphate (Pi) availability causes terminal differentiation of the root apical meristem (RAM), a phenomenon known as root meristem exhaustion or determined growth. Here, we report that the CLE14 peptide acts as a key player in this process. Low Pi stress induces iron mobilization in the RAM through the action of LPR1/LPR2, causing expression of CLE14 in the proximal meristem region. CLV2 and PEPR2 receptors perceive CLE14 and trigger RAM differentiation, with concomitant downregulation of SHR/SCR and PIN/AUXIN pathway. Our results reveal multiple steps of the molecular mechanism of one of the most physiologically important root nutrient responses.


Developmental Biology | 2018

Transcriptional landscapes of Axolotl (Ambystoma mexicanum)

Juan Caballero-Pérez; Annie Espinal-Centeno; Francisco Falcon; Luis F. García-Ortega; Everardo Curiel-Quesada; Andrés Cruz-Hernández; László Bakó; Xuemei Chen; Octavio Martínez; Mario A. Arteaga-Vazquez; Luis Herrera-Estrella; Alfredo Cruz-Ramírez

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


New Phytologist | 2017

XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA‐RELATED

Chengsong Zhao; Theres Lasses; László Bakó; Danyu Kong; Bingyu Zhao; Bidisha Chanda; Aureliano Bombarely; Alfredo Cruz-Ramírez; Ben Scheres; Amy M. Brunner; Eric P. Beers

The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.

Collaboration


Dive into the Alfredo Cruz-Ramírez's collaboration.

Top Co-Authors

Avatar

José López-Bucio

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Caballero-Pérez

Autonomous University of Queretaro

View shared research outputs
Top Co-Authors

Avatar

Dolores Gutiérrez-Alanís

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge