José López-Bucio
Universidad Michoacana de San Nicolás de Hidalgo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José López-Bucio.
Plant Physiology | 2002
José López-Bucio; Esmeralda Hernández-Abreu; Lenin Sánchez-Calderón; Marı́a Fernanda Nieto-Jacobo; June Simpson; Luis Herrera-Estrella
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 μm), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.
Plant Physiology | 2009
Hexon Angel Contreras-Cornejo; Lourdes Macías-Rodríguez; Carlos Cortés-Penagos; José López-Bucio
Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings inoculated with either T. virens or T. atroviride showed characteristic auxin-related phenotypes, including increased biomass production and stimulated lateral root development. Mutations in genes involved in auxin transport or signaling, AUX1, BIG, EIR1, and AXR1, were found to reduce the growth-promoting and root developmental effects of T. virens inoculation. When grown under axenic conditions, T. virens produced the auxin-related compounds indole-3-acetic acid, indole-3-acetaldehyde, and indole-3-ethanol. A comparative analysis of all three indolic compounds provided detailed information about the structure-activity relationship based on their efficacy at modulating root system architecture, activation of auxin-regulated gene expression, and rescue of the root hair-defective phenotype of the rhd6 auxin response Arabidopsis mutant. Our results highlight the important role of auxin signaling for plant growth promotion by T. virens.
Plant Science | 2000
José López-Bucio; Marı́a Fernanda Nieto-Jacobo; Verenice Ramı́rez-Rodrı́guez; Luis Herrera-Estrella
During the last 20 years increasing experimental evidence has associated organic acid metabolism with plant tolerance to environmental stress. Current knowledge shows that organic acids not only act as intermediates in carbon metabolism but also as key components in mechanisms that some plants use to cope with nutrient deficiencies, metal tolerance and plant-microbe interactions operating at the root-soil interphase. In this review we summarize recent knowledge on the physiology and occurrence of organic acids in plants and their special relevance concerning nitrate reduction, phosphorus and iron acquisition, aluminum tolerance and soil ecology. We also discuss novel findings in relation to the biotechnological manipulation of organic acids in transgenic models ranging from cell cultures to whole plants. This novel perspective of organic acid metabolism and its potential manipulation may represent a way to understand fundamental aspects of plant physiology and lead to new strategies to obtain crop varieties better adapted to environmental and mineral stress.
Nature Biotechnology | 2000
José López-Bucio; Octavio Martínez de la Vega; Arturo Guevara-García; Luis Herrera-Estrella
Phosphorus (P) is one of the most important nutrients limiting agricultural production worldwide. In acid and alkaline soils, which make up over 70% of the worlds arable land, P forms insoluble compounds that are not available for plant use. To reduce P deficiencies and ensure plant productivity, nearly 30 million tons of P fertilizer are applied every year. Up to 80% of the applied P fertilizer is lost because it becomes immobile and unavailable for plant uptake. Therefore, the development of novel plant varieties more efficient in the use of P represents the best alternative to reduce the use of P fertilizers and achieve a more sustainable agriculture. We show here that the ability to use insoluble P compounds can be significantly enhanced by engineering plants to produce more organic acids. Our results show that when compared to the controls, citrate-overproducing plants yield more leaf and fruit biomass when grown under P-limiting conditions and require less P fertilizer to achieve optimal growth.
Plant Signaling & Behavior | 2009
Randy Ortiz-Castro; Hexon Angel Contreras-Cornejo; Lourdes Macías-Rodríguez; José López-Bucio
Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.
Plant Physiology | 2006
Lenin Sánchez-Calderón; José López-Bucio; Alejandra Chacón-López; Abel Gutiérrez-Ortega; Esmeralda Hernández-Abreu; Luis Herrera-Estrella
Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation.
Plant Physiology | 2005
José López-Bucio; Esmeralda Hernández-Abreu; Lenin Sánchez-Calderón; Anahí Pérez-Torres; Rebekah A. Rampey; Bonnie Bartel; Luis Herrera-Estrella
Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG.
Molecular Plant-microbe Interactions | 2007
José López-Bucio; Juan Carlos Campos-Cuevas; Erasto Hernández-Calderón; Crisanto Velásquez-Becerra; Rodolfo Farías-Rodríguez; Lourdes Macías-Rodríguez; Eduardo Valencia-Cantero
Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.
Plant Cell and Environment | 2008
Randy Ortiz-Castro; Miguel Martínez-Trujillo; José López-Bucio
N-acyl-homoserine lactones (AHLs) belong to a class of bacterial quorum-sensing signals important for bacterial cell-to-cell communication. We evaluated Arabidopsis thaliana growth responses to a variety of AHLs ranging from 4 to 14 carbons in length, focusing on alterations in post-embryonic root development as a way to determine the biological activity of these signals. The compounds affected primary root growth, lateral root formation and root hair development, and in particular, N-decanoyl-HL (C10-HL) was found to be the most active AHL in altering root system architecture. Developmental changes elicited by C10-HL were related to altered expression of cell division and differentiation marker lines pPRZ1:uidA, CycB1:uidA and pAtEXP7:uidA in Arabidopsis roots. Although the effects of C10-HL were similar to those produced by auxins in modulating root system architecture, the primary and lateral root response to this compound was found to be independent of auxin signalling. Furthermore, we show that mutant and overexpressor lines for an Arabidopsis fatty acid amide hydrolase gene (AtFAAH) sustained altered growth response to C10-HL. All together, our results suggest that AHLs alter root development in Arabidopsis and that plants posses the enzymatic machinery to metabolize these compounds.
Plant Signaling & Behavior | 2008
Randy Ortiz-Castro; Eduardo Valencia-Cantero; José López-Bucio
Accumulating evidence indicates that plant growth promoting rhizobacteria (PGPR) influence plant growth and development by the production of phytohormones such as auxins, gibberellins, and cytokinins. Little is known on the genetic basis and signal transduction components that mediate the beneficial effects of PGPRs in plants. We recently reported the identification of a Bacillus megaterium strain that promoted growth of A. thaliana and P. vulgaris seedlings. In this addendum, the role of cytokinin signaling in mediating the plant responses to bacterial inoculation was investigated using A. thaliana mutants lacking one, two or three of the putative cytokinin receptors CRE1, AHK2 and AHK3, and RPN12 a gene involved in cytokinin signaling. We show that plant growth promotion by B. megaterium is reduced in AHK2-2 single and double mutant combinations and in RPN12. Furthermore, the triple cytokinin-receptor CRE1-12/AHK2-2/AHK3-3 knockout was insensitive to inoculation in terms of growth promotion and root developmental responses. Our results indicate that cytokinin receptors play a complementary role in plant growth promotion by B. megaterium.