Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alfredo Gorio is active.

Publication


Featured researches published by Alfredo Gorio.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma

Alfredo Gorio; Necati Gökmen; Serhat Erbayraktar; Osman Yilmaz; Laura Madaschi; Cinzia Cichetti; Anna Maria Di Giulio; Enver Vardar; Anthony Cerami; Michael Brines

Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production. In the brain, for example, EPO and its receptor are locally produced, are modulated by metabolic stressors, and provide neuroprotective and antiinflammatory functions. We have previously shown that recombinant human EPO (rhEPO) administered within the systemic circulation enters the brain and is neuroprotective. At present, it is unknown whether rhEPO can also improve recovery after traumatic injury of the spinal cord. To evaluate whether rhEPO improves functional outcome if administered after cord injury, two rodent models were evaluated. First, a moderate compression of 0.6 N was produced by application of an aneursym clip at level T3 for 1 min. RhEPO (1,000 units per kg of body weight i.p.) administered immediately after release of compression was associated with partial recovery of motor function within 12 h after injury, which was nearly complete by 28 days. In contrast, saline-treated animals exhibited only poor recovery. In the second model used, rhEPO administration (5,000 units per kg of body weight i.p. given once 1 h after injury) also produced a superior recovery of function compared with saline-treated controls after a contusion of 1 N at level T9. In this model of more severe spinal cord injury, secondary inflammation was also markedly attenuated by rhEPO administration and associated with reduced cavitation within the cord. These observations suggest that rhEPO provides early recovery of function, especially after spinal cord compression, as well as longer-latency neuroprotective, antiinflammatory and antiapoptotic functions.


Developmental Brain Research | 1983

Gangliosides enhance neurite outgrowth in PC12 cells

G. Ferrari; M. Fabris; Alfredo Gorio

Gangliosides are surface membrane components that have been suggested to play a significant role in the regulation of many cellular events including neuronal differentiation, growth and regeneration. We have chosen PC12 cell as a model system to study the influence of exogenously added glycosphyngolipids on in vitro differentiation and regeneration. A mixture of bovine brain gangliosides, (GM1 21%, GD1a 39.7%, GD1b 16% and GT 19%) or purified GM1 and GT respectively were added to culture media containing NGF on plating day and their effect was monitored on alternate days starting on day 5. The degree and rate of fiber outgrowth was significantly enhanced by media containing gangliosides at a concentration of 10(-6), 10(-7) M when serum was left out and 10(-3), 10(-4) M when serum was added to the culture medium. The stimulating ganglioside action required the presence of NGF to induce neurite outgrowth. However, binding studies indicated that exogenous gangliosides do not affect NGF binding to PC12 cells, therefore their stimulatory action may be separated from the interaction between NGF and its receptors. Subculturing of NGF-treated cells for 10 days demonstrated that gangliosides treatment also enhanced the NGF stimulated regeneration of neurites. Gangliosides may be incorporated at the level of cell surface, thereby affecting and facilitating membrane phenomena involved in neurite outgrowth.


Neuroscience | 1983

Muscle reinnervation--II. Sprouting, synapse formation and repression.

Alfredo Gorio; G. Carmignoto; M. Finesso; P. Polato; M.G. Nunzi

Extensor digitorum longus muscle is reinnervated by the regenerating neurites at the end-plate region; as soon as the contact is made, the rate of neurite elongation inside the cleft decreases about 1000-fold while interfibre growth and sprout formation proceed unchanged. Polyinnervation reaches the maximum level 7-10 days after reinnervation, then synaptic repression begins. The elimination of redundant innervation takes place when the biophysical properties of the muscle are again normal. There is no sign of either phagocytosis or degeneration, therefore the process of synaptic repression is probably due to retraction, as neurites do when in culture. The role of Schwann cells and nerve sheath in the process of maintenance is suggested.


Neuroscience | 1984

GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine.

H. Kojima; Alfredo Gorio; Damir Janigro; Gösta Jonsson

The effect of exogenous GM1 ganglioside on selectively noradrenaline-denervated rat cerebral cortex was investigated by measuring the spatial distribution of endogenous noradrenaline levels and by fluorescence histochemical analysis. A local noradrenaline denervation was produced by intracortical infusion of the selective catecholamine neurotoxin 6-hydroxydopamine for 3 or 7 days. The neurotoxin infusion caused an almost complete noradrenaline denervation in a restricted area around the infusion point as reflected by an almost complete long-term disappearance of noradrenaline nerve terminals and reduction of noradrenaline levels. There was with time a slow recovery of the levels, most likely related to a spontaneous noradrenaline nerve terminal regeneration. Post-treatment for 1 week with GM1 had very small effects on the 6-hydroxydopamine-induced reduction of the noradrenaline levels, while pretreatment with GM1 for 3 days before the neurotoxin infusion and continuing the GM1 administration for another 7-14 days significantly enhanced noradrenaline recovery, as observed both bio- and histochemically. GM1 had no effect on the 6-hydroxydopamine-induced noradrenaline depletion acutely, indicating that GM1 does not interfere with the direct neurotoxic actions of 6-hydroxydopamine. The present results thus indicate that exogenous GM1 enhances regrowth of noradrenaline nerve terminals which may be due to a regrowth stimulatory effect (regeneration/collateral sprouting) and/or related to protective actions of GM1 against retrograde degeneration of noradrenaline axons following the neurotoxin-induced lesion.


Neuroscience | 2007

Erythropoietin-mediated preservation of the white matter in rat spinal cord injury.

Laura Vitellaro-Zuccarello; Samanta Mazzetti; Laura Madaschi; Paola Bosisio; Alfredo Gorio; S. De Biasi

We investigated the effect of a single administration of recombinant human erythropoietin (rhEPO) on the preservation of the ventral white matter of rats at 4 weeks after contusive spinal cord injury (SCI), a time at which functional recovery is significantly improved in comparison to the controls [Gorio A, Necati Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Enver Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450-9455; Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S, Coleman T, Cerami A, Brines M (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci U S A 102:16379-16384]. Specifically, we examined, by morphological and cytochemical methods combined with light, confocal and electron microscopy, i) myelin preservation, ii) activation of adult oligodendrocyte progenitors (OPCs) identified for the expression of NG2 transmembrane proteoglycan, iii) changes in the amount of the chondroitin sulfate proteoglycans neurocan, versican and phosphacan and of their glycosaminoglycan component labeled with Wisteria floribunda lectin, and iv) ventral horn density of the serotonergic plexus as a marker of descending motor control axons. Injured rats received either saline or a single dose of rhEPO within 30 min after SCI. The results showed that the significant improvement of functional outcome observed in rhEPO-treated rats was associated with a better preservation of myelin in the ventral white matter. Moreover, the significant increase of both the number of NG2-positive OPCs and the labeling for Nogo-A, a marker of differentiated oligodendrocytes, suggested that rhEPO treatment could result in the generation of new myelinating oligodendrocytes. Sparing of fiber tracts in the ventral white matter was confirmed by the increased density of the serotonergic plexus around motor neurons. As for chondroitin sulfate proteoglycans, only phosphacan, increased in saline-treated rats, returned to normal levels in rhEPO group, probably reflecting a better maintenance of glial-axolemmal relationships along nerve fibers. In conclusion, this investigation expands previous studies supporting the pleiotropic neuroprotective effect of rhEPO on secondary degenerative response and its therapeutic potential for the treatment of SCI and confirms that the preservation of the ventral white matter, which contains descending motor pathways, may be critical for limiting functional deficit.


Journal of Neuroscience Research | 1998

Systemic administration of insulin‐like growth factor decreases motor neuron cell death and promotes muscle reinnervation

Letizia Vergani; Anna Maria Di Giulio; Matteo Losa; Giuseppe Rossoni; Eugenio E. Müller; Alfredo Gorio

Neonatal sciatic nerve axotomy causes motoneuron death and muscle denervation atrophy. The aim of the present study was to determine whether insulin‐like growth factor‐I (IGF‐I) administration promotes muscle reinnervation and counteracts motor neuron loss after such an injury. Six weeks after sciatic nerve axotomy performed in 2‐day‐old pups, the number of motor neurons, as assessed by retrograde transport of horseradish peroxidase injected into the extensor digitorum longus (EDL) muscle, was reduced from 52 ± 3 to 26 ± 3. Subsequent administration of IGF‐I at the doses of 0.02 mg/kg or 1 mg/kg increased the number of motor neurons to 35 ± 2 and 37 ± 5, respectively. The effect on motoneuron survival was accompanied by improved muscle fibre morphometry and restoration of indirect EDL muscle isometric twitch tension, which was about 80% of control values for both doses of IGF‐I compared with 60% observed with saline treatment. Reinnervated EDL muscle from saline‐treated rats cannot hold tetanic tension, which is, however, achieved after IGF‐I treatment at either dose. Thus, both high and low doses of IGF‐I counteracted motoneuron death and improved muscle reinnervation following neonatal sciatic nerve axotomy. IGF‐I at 5 μg/kg failed to increase muscle reinnervation. J. Neurosci. Res. 54:840–847, 1998.


Neuroscience | 2008

Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury.

Laura Vitellaro-Zuccarello; Samanta Mazzetti; Laura Madaschi; Paola Bosisio; Elena Fontana; Alfredo Gorio; S. De Biasi

Using a standardized rat model of contusive spinal cord injury (SCI; [Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450-9455]), we previously showed that the administration of recombinant human erythropoietin (rhEPO) improves both tissue sparing and locomotory outcome. In the present study, to better understand rhEPO-mediated effects on chronic astrocyte response to SCI in rat, we have used immunocytochemical methods combined with confocal and electron microscopy to investigate, 1 month after injury, the effects of a single rhEPO administration on the expression of a) aquaporin 4 (AQP4), the main astrocytic water channel implicated in edema development and resolution, and two molecules (dystrophin and syntrophin) involved in its membrane anchoring; b) glial fibrillary acidic protein (GFAP) and vimentin as markers of astrogliosis; c) chondroitin sulfate proteoglycans of the extracellular matrix which are upregulated after SCI and can inhibit axonal regeneration and influence neuronal and glial properties. Our results show that rhEPO administration after SCI modifies astrocytic response to injury by increasing AQP4 immunoreactivity in the spinal cord, but not in the brain, without apparent modifications of dystrophin and syntrophin distribution. Attenuation of astrogliosis, demonstrated by the semiquantitative analysis of GFAP labeling, was associated with a reduction of phosphacan/RPTP zeta/beta, whereas the levels of lecticans remained unchanged. Finally, the relative volume of a microvessel fraction was significantly increased, indicating a pro-angiogenetic or a vasodilatory effect of rhEPO. These changes were consistently associated with remarkable reduction of lesion size and with improvement in tissue preservation and locomotor recovery, confirming previous observations and underscoring the potentiality of rhEPO for the therapeutic management of SCI.


Journal of Neurochemistry | 1985

Altered Axonal Transport of Cytoskeletal Proteins in the Mutant Diabetic Mouse

Maurizio Vitadello; G. Filliatreau; J. L. Dupont; Raymonde Hassig; Alfredo Gorio; L. Di Giamberardino

Abstract: Polypeptides in the motor axons of the sciatic nerve in 120‐day‐old normal and diabetic mice C57BL/Ks (db/db) were labeled by injection of [35S]methionine into the ventral horn of the spinal cord. At 8, 15, and 25 days after the injection, the distribution of radiolabeled polypeptides along the sciatic nerve was analyzed by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Four major radiolabeled polypeptides, tentatively identified as actin, tubulin, and the two lightest subunits of the neurofilament triplet, were studied in both diabetic and control mice. In the diabetic animals, the two polypeptides identified as actin and tubulin showed a reduction of average velocity of migration along the sciatic nerve, resulting in a higher fraction of radioactivity in the proximal part of the sciatic nerve, whereas the front of radioactivity (advancing at maximal velocity) moved at a normal rate. In contrast, both the average and maximal velocities of the two neurofilament subunits were slower in the diabetic mice than in the control mice. These results indicate that the axonal transport of the cytoskeletal proteins is differentially affected in the course of diabetic neuropathy, and may suggest that the impairment concerns mainly the proteins carried by the slowest component of axonal transport.


Developmental Brain Research | 1984

Effect of GM1 ganglioside on neonatally neurotoxin induced degeneration of serotonin neurons in the rat brain

Gösta Jonsson; Alfredo Gorio; Håkan Hallman; D. Janigro; H. Kojima; R. Zanoni

The effect of exogenous GM1 ganglioside on the 5,7-dihydroxytryptamine (5,7-HT; a selective serotonin neurotoxin) induced alteration of the postnatal development of central 5-hydroxytryptamine (5-HT; serotonin) neurons has been investigated using neuro-chemical and immunocytochemical techniques. Neonatal 5,7-HT (50 mg/kg s.c.) treatment is known to lead to a marked and a permanent degeneration of distant 5-HT nerve terminal projections (e.g. in cerebral cortex, hippocampus and spinal cord), while projections close to the 5-HT perikarya in the mesencephalon and pons-medulla increase their nerve density. These regional alterations are reflected by decreases and increases, respectively, of endogenous 5-HT, [3H]5-HT uptake in vitro and number of 5-HT nerve terminals demonstrated by immunocytochemistry. Treatment of newborn rats with GM1 (4 X 30 mg/kg s.c.; 24 h interval) had no significant effect on the postnatal development of 5-HT neurons. GM1 administration had furthermore no effect on the 5,7-HT induced alteration of the regional 5-HT levels and [3H]5-HT uptake in the cerebral cortex acutely, indicating that GM1 did not significantly interfere with the primary neurodegenerative actions of 5,7-HT. At the age of 1 month a clear counteracting effect of GM1 was observed, in particular of the 5,7-HT induced 5-HT denervations. The 5-HT levels in the frontal and occipital cortex were reduced to 25 and 20% of control after 5,7-HT alone, while these values were 70 and 40%, respectively, after 5,7-HT and GM1 treatment. A similar antagonizing effect of GM1 was found in the frontal cortex when measuring [3H]5-HT uptake. GM1 treatment also caused a minor reduction of the 5,7-HT induced increase of the 5-HT levels in striatum and mesencephalon. Quantitation of 5-HT nerve terminal density in sections processed for 5-HT immunocytochemistry using an automatic image analysis system showed markedly more nerve terminals in the frontal and occipital cortex after 5,7-HT + GM1 compared to 5,7-HT treatment alone. Minor counteracting effects of GM1 were noted in the hippocampus and spinal cord (thoracic-lumbar) as evaluated by chemical 5-HT assay, although substantial counteracting effects were observed locally in these areas by quantitative immunocytochemistry.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Pharmacology and Experimental Therapeutics | 2007

Reparixin, an Inhibitor of CXCR2 Function, Attenuates Inflammatory Responses and Promotes Recovery of Function after Traumatic Lesion to the Spinal Cord

Alfredo Gorio; Laura Madaschi; Giorgia Zadra; Giovanni Marfia; Barbara Cavalieri; Riccardo Bertini; Anna Maria Di Giulio

It has been shown that the blockade of CXCR1 and CXCR2 receptors prevents ischemia/reperfusion damage in several types of vascular beds. Reparixin is a recently described inhibitor of human CXCR1/R2 and rat CXCR2 receptor activation. We applied reparixin in rats following traumatic spinal cord injury and determined therapeutic temporal and dosages windows. Treatment with reparixin significantly counteracts secondary degeneration by reducing oligodendrocyte apoptosis, migration to the injury site of neutrophils and ED-1-positive cells. The observed preservation of the white matter might also be secondary to the enhanced proliferation of NG2-positive cells. The expression of macrophage-inflammatory protein-2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β was also counteracted, and the proliferation of glial fibrillary acidic protein-positive cells was markedly reduced. These effects resulted in a smaller post-traumatic cavity and in a significantly improved recovery of hind limb function. The best beneficial outcome of reparixin treatment required 7-day administration either by i.p. route (15 mg/kg) or subcutaneous infusion via osmotic pumps (10 mg/kg), reaching a steady blood level of 8 μg/ml. Methylprednisolone was used as a reference drug; such treatment reduced cytokine production but failed to affect the rate of hind limb recovery.

Collaboration


Dive into the Alfredo Gorio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Marfia

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Researchain Logo
Decentralizing Knowledge