Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Marfia is active.

Publication


Featured researches published by Giovanni Marfia.


PLOS ONE | 2011

Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy

Augusto Pessina; Arianna Bonomi; Valentina Coccè; Gloria Invernici; Stefania Elena Navone; Loredana Cavicchini; Francesca Sisto; Maura Ferrari; Lucia Viganò; Alberta Locatelli; Emilio Ciusani; Graziella Cappelletti; Daniele Cartelli; Caruso Arnaldo; Eugenio Parati; Giovanni Marfia; Roberto Pallini; Maria Laura Falchetti; Giulio Alessandri

Background Mesenchymal stromal cells may represent an ideal candidate to deliver anti-cancer drugs. In a previous study, we demonstrated that exposure of mouse bone marrow derived stromal cells to Doxorubicin led them to acquire anti-proliferative potential towards co-cultured haematopoietic stem cells (HSCs). We thus hypothesized whether freshly isolated human bone marrow Mesenchymal stem cells (hMSCs) and mature murine stromal cells (SR4987 line) primed in vitro with anti-cancer drugs and then localized near cancer cells, could inhibit proliferation. Methods and Principal Findings Paclitaxel (PTX) was used to prime culture of hMSCs and SR4987. Incorporation of PTX into hMSCs was studied by using FICT-labelled-PTX and analyzed by FACS and confocal microscopy. Release of PTX in culture medium by PTX primed hMSCs (hMSCsPTX) was investigated by HPLC. Culture of Endothelial cells (ECs) and aorta ring assay were used to test the anti-angiogenic activity of hMSCsPTX and PTX primed SR4987(SR4987PTX), while anti-tumor activity was tested in vitro on the proliferation of different tumor cell lines and in vivo by co-transplanting hMSCsPTX and SR4987PTX with cancer cells in mice. Nevertheless, despite a loss of cells due to chemo-induced apoptosis, both hMSCs and SR4987 were able to rapidly incorporate PTX and could slowly release PTX in the culture medium in a time dependent manner. PTX primed cells acquired a potent anti-tumor and anti-angiogenic activity in vitro that was dose dependent, and demonstrable by using their conditioned medium or by co-culture assay. Finally, hMSCsPTX and SR4987PTX co-injected with human cancer cells (DU145 and U87MG) and mouse melanoma cells (B16) in immunodeficient and in syngenic mice significantly delayed tumor takes and reduced tumor growth. Conclusions These data demonstrate, for the first time, that without any genetic manipulation, mesenchymal stromal cells can uptake and subsequently slowly release PTX. This may lead to potential new tools to increase efficacy of cancer therapy.


Journal of Pharmacology and Experimental Therapeutics | 2007

Reparixin, an Inhibitor of CXCR2 Function, Attenuates Inflammatory Responses and Promotes Recovery of Function after Traumatic Lesion to the Spinal Cord

Alfredo Gorio; Laura Madaschi; Giorgia Zadra; Giovanni Marfia; Barbara Cavalieri; Riccardo Bertini; Anna Maria Di Giulio

It has been shown that the blockade of CXCR1 and CXCR2 receptors prevents ischemia/reperfusion damage in several types of vascular beds. Reparixin is a recently described inhibitor of human CXCR1/R2 and rat CXCR2 receptor activation. We applied reparixin in rats following traumatic spinal cord injury and determined therapeutic temporal and dosages windows. Treatment with reparixin significantly counteracts secondary degeneration by reducing oligodendrocyte apoptosis, migration to the injury site of neutrophils and ED-1-positive cells. The observed preservation of the white matter might also be secondary to the enhanced proliferation of NG2-positive cells. The expression of macrophage-inflammatory protein-2, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β was also counteracted, and the proliferation of glial fibrillary acidic protein-positive cells was markedly reduced. These effects resulted in a smaller post-traumatic cavity and in a significantly improved recovery of hind limb function. The best beneficial outcome of reparixin treatment required 7-day administration either by i.p. route (15 mg/kg) or subcutaneous infusion via osmotic pumps (10 mg/kg), reaching a steady blood level of 8 μg/ml. Methylprednisolone was used as a reference drug; such treatment reduced cytokine production but failed to affect the rate of hind limb recovery.


Nature Protocols | 2013

Isolation and expansion of human and mouse brain microvascular endothelial cells

Stefania Elena Navone; Giovanni Marfia; Gloria Invernici; Silvia Cristini; Sara Nava; Sergio Balbi; Simone Sangiorgi; Emilio Ciusani; Alessandra Bosutti; Giulio Alessandri; Mark Slevin; Eugenio Parati

Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I–precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d.


Neurobiology of Disease | 2011

Adult neural precursors isolated from post mortem brain yield mostly neurons: An erythropoietin-dependent process

Giovanni Marfia; Laura Madaschi; Francesca Marra; Mauro Menarini; Daniele Bottai; Alessandro Formenti; Carmelo Bellardita; Anna Maria Di Giulio; Stephana Carelli; Alfredo Gorio

This study was aimed at the isolation of neural precursor cells (NPCs) capable of resisting to a prolonged ischemic insult as this may occur at the site of traumatic and ischemic CNS injuries. Adult mice were anesthetized and then killed by cervical dislocation. The cadavers were maintained at room temperature or at 4°C for different time periods. Post mortem neural precursors (PM-NPCs) were isolated, grown in vitro and their differentiation capability was investigated by evaluating the expression of different neuronal markers. PM-NPCs differentiate mostly in neurons, show activation of hypoxia-inducible factor-1 and MAPK, and express both erythropoietin (EPO) and its receptor (EPO-R). The exposure of PM-NPCs to neutralizing antibodies to EPO or EPO-R dramatically reduced the extent of neuronal differentiation to about 11% of total PM-NPCs. The functionality of mTOR and MAPK is also required for the expression of the neuronal phenotype by PM-NPCs. These results suggest that PM-NPCs can be isolated from animal cadaver even several hours after death and their self-renewable capability is comparable to normal neural precursors. Differently, their ability to achieve a neural phenotype is superior to that of NPCs, and this is mediated by the activation of hypoxia-induced factor 1 and EPO signaling. PM-NPCs may represent good candidates for transplantation studies in animal models of neurodegenerative diseases.


Arthritis Research & Therapy | 2014

Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration

Giovanni Marfia; Rolando Campanella; Stefania Elena Navone; Ileana Zucca; Alessandro Scotti; Matteo Figini; Clara Di Vito; Giulio Alessandri; Laura Riboni; Eugenio Parati

IntroductionBiglycan is an important proteoglycan of the extracellular matrix of intervertebral disc (IVD), and its decrease with aging has been correlated with IVD degeneration. Biglycan deficient (Bgn−/0) mice lack this protein and undergo spontaneous IVD degeneration with aging, thus representing a valuable in vivo model for preliminary studies on therapies for human progressive IVD degeneration. The purpose of the present study was to assess the possible beneficial effects of adipose-derived stromal cells (ADSCs) implants in the Bgn−/0 mouse model.MethodsTo evaluate ADSC implant efficacy, Bgn−/0 mice were intradiscally (L1-L2) injected with 8x104 ADSCs at 16 months old, when mice exhibit severe and complete IVD degeneration, evident on both 7Tesla Magnetic Resonance Imaging (7TMRI) and histology. Placebo and ADSCs treated Bgn−/0 mice were assessed by 7TMRI analysis up to 12 weeks post-transplantation. Mice were then sacrificed and implanted discs were analyzed by histology and immunohistochemistry for the presence of human cells and for the expression of biglycan and aggrecan in the IVD area.ResultsAfter in vivo treatment, 7TMRI revealed evident increase in signal intensity within the discs of mice that received ADSCs, while placebo treatment did not show any variation. Ultrastructural analyses demonstrated that human ADSC survival occurred in the injected discs up to 12 weeks after implant. These cells acquired a positive expression for biglycan, and this proteoglycan was specifically localized in human cells. Moreover, ADSC treatment resulted in a significant increase of aggrecan tissue levels.ConclusionOverall, this work demonstrates that ADSC implant into degenerated disc of Bgn−/0 mice ameliorates disc damage, promotes new expression of biglycan and increased levels of aggrecan. This suggests a potential benefit of ADSC implant in the treatment of chronic degenerative disc disease and prompts further studies in this field.


British Journal of Haematology | 2013

Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia‐bearing mice

Augusto Pessina; Valentina Coccè; Luisa Pascucci; Arianna Bonomi; Loredana Cavicchini; Francesca Sisto; Maura Ferrari; Emilio Ciusani; Antonio Crovace; Maria Laura Falchetti; Sonia Zicari; Arnaldo Caruso; Stefania Elena Navone; Giovanni Marfia; Anna Benetti; P. Ceccarelli; Eugenio Parati; Giulio Alessandri

Current leukaemia therapy focuses on increasing chemotherapy efficacy. Mesenchymal stromal cells (MSCs) have been proposed for carrying and delivery drugs to improve killing of cancer cells. We have shown that MSCs loaded with Paclitaxel (PTX) acquire a potent anti‐tumour activity. We investigated the effect of human MSCs (hMSCs) and mouse SR4987 loaded with PTX (hMSCsPTX and SR4987PTX) on MOLT‐4 and L1210, two leukaemia cell (LCs) lines of human and mouse origin, respectively. SR4987PTX and hMSCsPTX showed strong anti‐LC activity. hMSCsPTX, co‐injected with MOLT‐4 cells or intra‐tumour injected into established subcutaneous MOLT‐4 nodules, strongly inhibited growth and angiogenesis. In BDF1‐mice‐bearing L1210, the intraperitoneal administration of SR4987PTX doubled mouse survival time. In vitro, both hMSCs and hMSCsPTX released chemotactic factors, bound and formed rosettes with LCs. In ultrastructural analysis of rosettes, hMSCsPTX showed no morphological alterations while the attached LCs were apoptotic and necrotic. hMSCs and hMSCsPTX released molecules that reduced LC adhesion to microvascular endothelium (hMECs) and down‐modulated ICAM1 and VCAM1 on hMECs. Priming hMSCs with PTX is a simple procedure that does not require any genetic cell manipulation. Once the effectiveness of hMSCsPTX on established cancers in mice is proven, this procedure could be proposed for leukaemia therapy in humans.


Journal of Orthopaedic Research | 2012

Expression of neural and neurotrophic markers in nucleus pulposus cells isolated from degenerated intervertebral disc.

Stefania Elena Navone; Giovanni Marfia; Laura Canzi; Emilio Ciusani; Alessandra Canazza; Sergio Visintini; Rolando Campanella; Eugenio Parati

Intervertebral disc (IVD) degeneration is a common disorder of the lower spine. Since it is caused by loss of cellularity, there is interest in the comprehension of the cellular phenotypes. This study aimed to verify if stem cells isolated from nucleus pulposus of intervertebral discs (NPs‐IVD), which may express neurogenic properties, may be implicated in IVD disease. NPs‐IVD isolated from 14 human pathological discs were cultured under mesenchymal and neural differentiation. An induction of the neural markers GFAP, NF, MAP2, O4, and a decrement of the expression of the immature neural markers β‐tubulin III, Nestin, NG2, occurred within the neural differentiation. The expression of TrkA and p75NGFR, the receptors of NGF, was not correlated with neural induction; in contrast, TrkB, the BDNF receptor, increased and was co‐expressed with acid sensing ion channel 3 (ASIC3). In the same condition, neuroinflammatory markers were over‐expressed. We confirm our hypothesis that stem cells within IVD degeneration acquire neurogenic phenotype, causing the induction of markers related to inflammatory condition. These cells could promote the enrolment of neurotrophines in adaptation to the acidic microenvironment in degenerative conditions. These data could improve our knowledge about IVD cellularity and eventually lead to the development of pharmacological therapies.


Advances in Therapy | 2017

Modulation of Neuroinflammation in the Central Nervous System: Role of Chemokines and Sphingolipids

Roberta Gualtierotti; Laura Guarnaccia; Matteo Beretta; Stefania Elena Navone; Rolando Campanella; Laura Riboni; Paolo Rampini; Giovanni Marfia

Neuroinflammation is a process involved in the pathogenesis of different disorders, both autoimmune, such as neuropsychiatric systemic lupus erythematosus, and degenerative, such as Alzheimer’s and Parkinson’s disease. In the central nervous system, the local milieu is tightly regulated by different mediators, among which are chemoattractant cytokines, also known as chemokines. These small molecules are able to modulate trafficking of immune cells in the course of nervous system development or in response to tissue damage, and different patterns of chemokine molecule and receptor expression have been described in several neuroinflammatory disorders. In recent years, a number of studies have highlighted a pivotal role of sphingolipids in regulating neuroinflammation. Sphingolipids have different functions, among which are the control of leukocyte egress from lymphonodes into inflamed tissues, the expression of various mediators of inflammation and a direct effect on the cells of the central nervous system as regulators of neuroinflammation. In the future, a better knowledge of these two groups of mediators could provide insight into the pathogenesis of neuroinflammatory disorders and could help develop novel diagnostic tools and therapeutic strategies.


PLOS ONE | 2015

Sphingosine Kinase 2 and Ceramide Transport as Key Targets of the Natural Flavonoid Luteolin to Induce Apoptosis in Colon Cancer Cells.

Loubna Abdel Hadi; Clara Di Vito; Giovanni Marfia; Anita Ferraretto; Cristina Tringali; Paola Viani; Laura Riboni

The plant flavonoid luteolin exhibits different biological effects, including anticancer properties. Little is known on the molecular mechanisms underlying its actions in colorectal cancer (CRC). Here we investigated the effects of luteolin on colon cancer cells, focusing on the balance between ceramide and sphingosine-1-phosphate (S1P), two sphingoid mediators with opposite roles on cell fate. Using cultured cells, we found that physiological concentrations of luteolin induce the elevation of ceramide, followed by apoptotic death of colon cancer cells, but not of differentiated enterocytes. Pulse studies revealed that luteolin inhibits ceramide anabolism to complex sphingolipids. Further experiments led us to demonstrate that luteolin induces an alteration of the endoplasmic reticulum (ER)-Golgi flow of ceramide, pivotal to its metabolic processing to complex sphingolipids. We report that luteolin exerts its action by inhibiting both Akt activation, and sphingosine kinase (SphK) 2, with the consequent reduction of S1P, an Akt stimulator. S1P administration protected colon cancer cells from luteolin-induced apoptosis, most likely by an intracellular, receptor-independent mechanism. Overall this study reveals for the first time that the dietary flavonoid luteolin exerts toxic effects on colon cancer cells by inhibiting both S1P biosynthesis and ceramide traffic, suggesting its dietary introduction/supplementation as a potential strategy to improve existing treatments in CRC.


Glia | 2014

Autocrine/Paracrine Sphingosine- 1-Phosphate Fuels Proliferative and Stemness Qualities of Glioblastoma Stem Cells

Giovanni Marfia; Rolando Campanella; Stefania Elena Navone; Clara Di Vito; Elena Riccitelli; Loubna Abdel Hadi; Andrea Bornati; Gisele de Rezende; Paola Giussani; Cristina Tringali; Paola Viani; Paolo Rampini; Giulio Alessandri; Eugenio Parati; Laura Riboni

Accumulating reports suggest that human glioblastoma contains glioma stem‐like cells (GSCs) which act as key determinants driving tumor growth, angiogenesis, and contributing to therapeutic resistance. The proliferative signals involved in GSC proliferation and progression remain unclear. Using GSC lines derived from human glioblastoma specimens with different proliferative index and stemness marker expression, we assessed the hypothesis that sphingosine‐1‐phosphate (S1P) affects the proliferative and stemness properties of GSCs. The results of metabolic studies demonstrated that GSCs rapidly consume newly synthesized ceramide, and export S1P in the extracellular environment, both processes being enhanced in the cells exhibiting high proliferative index and stemness markers. Extracellular S1P levels reached nM concentrations in response to increased extracellular sphingosine. In addition, the presence of EGF and bFGF potentiated the constitutive capacity of GSCs to rapidly secrete newly synthesized S1P, suggesting that cooperation between S1P and these growth factors is of central importance in the maintenance and proliferation of GSCs. We also report for the first time that S1P is able to act as a proliferative and pro‐stemness autocrine factor for GSCs, promoting both their cell cycle progression and stemness phenotypic profile. These results suggest for the first time that the GSC population is critically modulated by microenvironmental S1P, this bioactive lipid acting as an autocrine signal to maintain a pro‐stemness environment and favoring GSC proliferation, survival and stem properties. GLIA 2014;62:1968–1981

Collaboration


Dive into the Giovanni Marfia's collaboration.

Top Co-Authors

Avatar

Stefania Elena Navone

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Rampini

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio Parati

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Guarnaccia

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge