Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ali A. Ashkar is active.

Publication


Featured researches published by Ali A. Ashkar.


Journal of Virology | 2003

Interleukin-15 and Natural Killer and NKT Cells Play a Critical Role in Innate Protection against Genital Herpes Simplex Virus Type 2 Infection

Ali A. Ashkar; Kenneth L. Rosenthal

ABSTRACT Interleukin-15 (IL-15), natural killer (NK) cells, and NK T (NKT) cells, components of the innate immune system, are known to contribute to defense against pathogens, including viruses. Here we report that IL-15−/− (NK− and NKT−/+) mice and RAG-2−/−/γc−/− (NK− and NKT−) mice that lack all lymphoid cells were very susceptible to vaginal infection with a low dose of herpes simplex virus type 2 (HSV-2). IL-15−/− and RAG-2−/−/γc−/− mice were 100-fold more susceptible and RAG-2−/−, CD-1−/− (NKT−), and gamma interferon (IFN-γ)−/− mice were 10-fold more susceptible to vaginal HSV-2 infection than control C57BL/6 mice. NK and/or NKT cells were the early source of IFN-γ in vaginal secretions following genital HSV-2 infection. This study demonstrates that IL-15 and NK-NKT cells are critical for innate protection against genital HSV-2.


Journal of Virology | 2003

Progesterone Increases Susceptibility and Decreases Immune Responses to Genital Herpes Infection

Charu Kaushic; Ali A. Ashkar; Lesley A. Reid; Kenneth L. Rosenthal

ABSTRACT Depo-provera, a long-acting progestational formulation, is widely used to facilitate infection of sexually transmitted diseases in animal models. We have previously reported that hormone treatments change susceptibility and immune responses to genital tract infections. In this study we compared the changes in susceptibility of mice to genital herpes simplex virus type 2 (HSV-2) after Depo-provera or a saline suspension of progesterone (P-sal). We found that following Depo-provera-treatment, mice had prolonged diestrus that lasted more than 4 weeks. This coincided with a 100-fold increase in susceptibility to genital HSV-2 compared to that of untreated mice. Mice given P-sal were in diestrous stage for 4 to 6 days before returning to irregular reproductive cycles. When these mice were infected at diestrus they showed a 10-fold increase in susceptibility compared to that of normal, untreated mice. P-sal-treated mice infected at estrus were susceptible to HSV-2, depending on the infectious dose. Normal, untreated mice in estrus were not susceptible to HSV-2, even at a high infectious dose of 107 PFU. In addition to alterations in susceptibility, Depo-provera treatment had inhibitory effects on immune responses to HSV-2. Mice immunized with HSV-2 protein (gB) and treated with Depo-provera showed significant lowering of local HSV-2-specific immunoglobulin G (IgG) and IgA in their vaginal washes. Mice immunized with an attenuated strain of HSV-2 2 weeks after Depo-provera treatment failed to develop protection when challenged intravaginally with wild-type HSV-2. In contrast, mice given progesterone and immunized at diestrus or estrus were completely protected from intravaginal challenge. These studies show that Depo-provera treatment changes susceptibility and local immune responses to genital HSV-2 infection. Animal models and vaccine strategies for sexually transmitted diseases need to consider the effect of hormone treatments on susceptibility and immune responses.


Journal of Immunology | 2003

Assessment of Requirements for IL-15 and IFN Regulatory Factors in Uterine NK Cell Differentiation and Function During Pregnancy

Ali A. Ashkar; Gordon P. Black; Qingxia Wei; Hong He; Luchuan Liang; Judith R. Head; B. Anne Croy

In mouse and human, precursors of NK cell lineage home to decidualizing uteri. To assess the requirement for IL-15, an essential cytokine for NK differentiation in lymphoid tissue, on uterine NK (uNK) cell differentiation, implantation sites from IL-15−/− mice were analyzed histologically. IL-15−/− implantation sites had no uNK cells, no spiral-artery modification, and lacked the decidual integrity found in normal mice. IL-15−/− recipients of C57BL/6 marrow displayed similar pathology. However, implantation sites from recombination-activating gene-2−/−γc−/− (alymphoid) recipients of IL-15−/− marrow showed normal uNK cells, modified spiral arteries, and well-developed decidua basalis. Deletion of the IFN-regulatory factor (IRF)-1, but not IRF-2 (factors important in peripheral NK cell differentiation) limited but did not prevent uNK cell development. In situ hybridization localized IRF-1 largely to placental trophoblast cells. IRF-1−/− marrow transplanted into recombination-activating gene-2−/−γc−/− displayed competence for full uNK cell differentiation. IL-15 mRNA expression at implantation sites of IRF-1−/− and C57BL/6 was similar, suggesting that, unlike in bone marrow and spleen, IRF-1 does not regulate IL-15 in the pregnant uterus. Terminal differentiation of uNK cells was not promoted in pregnant IRF-1−/− mice by 5-day infusion of murine rIL-15, suggesting that IRF-1 deficiency rather than IL-15 deficiency limits uNK cell differentiation in these mice. Further, IRF-1 regulates placental growth, birth weight, and postnatal growth of offspring. These studies indicate that uNK cell development and maturation share some aspects with NK cell development in other tissues, but also display distinctive tissue-specific regulation.


Journal of Reproductive Immunology | 2003

Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus

B. Anne Croy; Souad Esadeg; Sirirak Chantakru; Marianne J. van den Heuvel; Valdemar A. Paffaro; Hong He; Gordon P. Black; Ali A. Ashkar; Yasuo Kiso; Jianhong Zhang

Virgin adult C57Bl/6J mouse uterus contains a population of small, non-granulated Natural Killer (NK) cells with balanced expression of NK cell activating and inhibiting LY49 receptors. Coincident with blastocyst implantation and decidualization, uterine (u)NK cells become activated. The surface glycoslyation of uNK changes, the cells proliferate and they induce production of interferon (IFN)gamma, perforin, serine esterases and other molecules, including angiogenic factors. Mouse strains genetically ablated in uNK cells fail to undergo modification of spiral artery segments that branch from the uterine artery and feed into the placenta and these mice do not sustain a robust decidualization response. IFN-gamma is thought, from bone marrow transplantation and therapeutic studies, to be the key uNK-cell derived mediator regulating gene expression in vascular and decidual tissues. Here, we review recent studies showing that IL-15 is the critical cytokine controlling uNK cell differentiation and that uNK cells are activated by either IL-12 or IL-18 and by other factors when both IL-12 and IL-18 are genetically absent from implantation sites. We address possible roles of the IFN-gamma regulated gene alpha2-macroglobulin (alpha2-M) in regulation of the position of fetal trophoblast within the walls of the spiral arteries, and we discuss approaches that have been successful in evaluating mechanisms involved in homing of mouse uNK cell precursors to the uterus. These approaches maybe applicable to studies in women. Our studies show that complex immuno-physiological events contribute to spiral artery modification by mid-gestation in mice.


Journal of Virology | 2003

Local Delivery of CpG Oligodeoxynucleotides Induces Rapid Changes in the Genital Mucosa and Inhibits Replication, but Not Entry, of Herpes Simplex Virus Type 2

Ali A. Ashkar; Stefan Bauer; William J. Mitchell; Jeff Vieira; Kenneth L. Rosenthal

ABSTRACT Mucosal surfaces are the entry sites for the vast majority of infectious pathogens and provide the first line of defense against infection. In addition to the epithelial barrier, the innate immune system plays a key role in recognizing and rapidly responding to invading pathogens via innate receptors, such as Toll-like receptors (TLR). Bacterial CpG DNA, a potent activator of innate immunity, is recognized by TLR9. Here, we confirm that local mucosal, but not systemic, delivery of CpG oligodeoxynucleotides (ODN) to the genital tract protects mice from a subsequent lethal vaginal herpes simplex virus type 2 (HSV-2) challenge. Since these effects were so local in action, we examined the genital mucosa. Local delivery of CpG ODN induced rapid proliferation and thickening of the genital epithelium and caused significant recruitment of inflammatory cells to the submucosa. Local CpG ODN treatment also resulted in inhibition of HSV-2 replication but had no effect on HSV-2 entry into the genital mucosa. CpG ODN-induced protection against HSV-2 was not associated with early increases in gamma interferon (IFN-γ) secretion in the genital tract, and CpG ODN-treated IFN-γ−/− mice were protected from subsequent challenge with a lethal dose of HSV-2. Treatment of human HEK-293 cells transfected with murine TLR9 showed that the antiviral activity of CpG ODN was mediated through TLR9. These studies suggest that local induction of mucosal innate immunity can provide protection against sexually transmitted infections, such as HSV-2 or possibly human immunodeficiency virus, at the mucosal surfaces.


Biology of Reproduction | 2009

Interferon Gamma in Successful Pregnancies

Shawn P. Murphy; Chandrakant Tayade; Ali A. Ashkar; Kota Hatta; Jianhong Zhang; B. Anne Croy

Abstract Interferon gamma (IFNG) is a proinflammatory cytokine secreted in the uterus during early pregnancy. It is abundantly produced by uterine natural killer cells in maternal endometrium but also by trophoblasts in some species. In normal pregnancies of mice, IFNG plays critical roles that include initiation of endometrial vasculature remodeling, angiogenesis at implantation sites, and maintenance of the decidual (maternal) component of the placenta. In livestock and in humans, deviations in these processes are thought to contribute to serious gestational complications, such as fetal loss or preeclampsia. Interferon gamma has broader roles in activation of innate and adaptive immune responses to viruses and tumors, in part through upregulating transcription of genes involved in cell cycle regulation, apoptosis, and antigen processing/presentation. Despite this, rodent and human trophoblast cells show dampened responses to IFNG that reflect the resistance of these cells to IFNG-mediated activation of major histocompatibility complex (MHC) class II transplantation antigen expression. Lack of MHC class II antigens on trophoblasts is thought to facilitate survival of the semiallogeneic conceptus in the presence of maternal lymphocytes. This review describes the dynamic roles of IFNG in successful pregnancy and briefly summarizes data on IFNG in gestational pathologies.


The Journal of Infectious Diseases | 2004

Toll-Like Receptor (TLR)-3, but Not TLR4, Agonist Protects against Genital Herpes Infection in the Absence of Inflammation Seen with CpG DNA

Ali A. Ashkar; Xiao-Dan Yao; Navkiran Gill; Dusan Sajic; Amy J. Patrick; Kenneth L. Rosenthal

We previously demonstrated that delivery of CpG oligodeoxynucleotide (ODN) to vaginal mucosa induced an innate mucosal antiviral state that protected against intravaginal challenge with herpes simplex virus (HSV)-2. We report that mucosal, but not systemic, delivery of ligands for Toll-like receptor (TLR)-3, but not TLR4, induced protection against genital HSV-2 challenge that was not accompanied by the local inflammation and splenomegaly seen after treatment with CpG ODN. Surprisingly, TLR4 messenger (m) RNA expression was shown to be higher than that of TLR3 or TLR9 in murine genital mucosa. Similarly, murine RAW264.7 cells were shown to express more mRNA for TLR4 than TLR3 or TLR9, yet treatment of these cells with double-stranded RNA provided greater protection than lipopolysaccharide or CpG ODN. These results indicate that TLR3 ligand induces a more potent antiviral response than TLR4 and TLR9 ligands and may be a safer means of protecting against sexually transmitted viral infections.


Journal of Immunology | 2010

Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung.

Cherrie-Lee Small; Christopher R. Shaler; Sarah McCormick; Mangalakumari Jeyanathan; Daniela Damjanovic; Earl G. Brown; Petra C. Arck; Manel Jordana; Charu Kaushic; Ali A. Ashkar; Zhou Xing

Influenza viral infection is well-known to predispose to subsequent bacterial superinfection in the lung but the mechanisms have remained poorly defined. We have established a murine model of heterologous infections by an H1N1 influenza virus and Staphylococcus aureus. We found that indeed prior influenza infection markedly increased the susceptibility of mice to secondary S. aureus superinfection. Severe sickness and heightened bacterial infection in flu and S. aureus dual-infected animals were associated with severe immunopathology in the lung. We further found that flu-experienced lungs had an impaired NK cell response in the airway to subsequent S. aureus bacterial infection. Thus, adoptive transfer of naive NK cells to the airway of prior flu-infected mice restored flu-impaired antibacterial host defense. We identified that TNF-α production of NK cells played an important role in NK cell-mediated antibacterial host defense as NK cells in flu-experienced lungs had reduced TNF-α expression and adoptive transfer of TNF-α–deficient NK cells to the airway of flu-infected mice failed to restore flu-impaired antibacterial host defense. Defected NK cell function was found to be an upstream mechanism of depressed antibacterial activities by alveolar macrophages as contrast to naive wild-type NK cells, the NK cells from flu-infected or TNF-α–deficient mice failed to enhance S. aureus phagocytosis by alveolar macrophages. Together, our study identifies the weakened NK cell response in the lung to be a novel critical mechanism for flu-mediated susceptibility to bacterial superinfection.


Current Molecular Medicine | 2002

Toll-like Receptor 9, CpG DNA and Innate Immunity

Ali A. Ashkar; Kenneth L. Rosenthal

Innate immunity provides the first line of defense against invading pathogens and is essential for survival in the absence of adaptive immune responses. Innate immune recognition relies on a limited number of germ-line encoded receptors, such as Toll-like receptors (TLRs), that evolved to recognize conserved molecular patterns of microbial origin. To date, ten transmembrane proteins in the TLR family have been described. It is becoming increasingly clear that bacterial CpG DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG are potent inducers of the innate immune system including dendritic cells (DCs), macrophages, and natural killer (NK) and NKT cells. Recent studies indicate that mucosal or systemic delivery of CpG DNA can act as a potent adjuvant in a vaccine combination or act alone as an anti-microbial agent. Recently, it was shown that TLR9 is essential for the recognition of unmethylated CpG DNA since cells from TLR9-deficient mice are unresponsive to CpG stimulation. Although the effects of CpG DNA on bone marrow-derived cells are beginning to unfold, there has been little or no information regarding the mechanisms of CpG DNA function on non-immune cells or tissues. This review focuses on the recent advances in CpG-DNA/TLR9 signaling effects on the activation of innate immunity.


Journal of Virology | 2003

Prolonged exposure to progesterone prevents induction of protective mucosal responses following intravaginal immunization with attenuated herpes simplex virus type 2

Amy Gillgrass; Ali A. Ashkar; Kenneth L. Rosenthal; Charu Kaushic

ABSTRACT Depo-Provera (Depo) is a long-acting progestational formulation that is a popular form of contraception for women. In animal models of sexually transmitted diseases, it is used to facilitate infection. Here we report that treatment with Depo, in a mouse model of genital herpes simplex virus type 2 (HSV-2), altered immune responses depending on the length of time that animals were exposed to Depo prior to immunization. Mice immunized intravaginally (i.vag.) with an attenuated strain (TK−) of HSV-2 following longer (15 days) exposure to Depo (Depo 15 group) failed to show protection when challenged with wild-type HSV-2. In contrast, mice that were immunized shortly after Depo treatment (5 days; Depo 5 group) were fully protected and showed no genital pathology after HSV-2 challenge. High viral titers were detected in the vaginal washes of the Depo 15 group up to 6 days postchallenge. In contrast, no viral shedding was observed beyond day 3 postchallenge in the Depo 5 group. Following i.vag. TK− immunization, high levels of gamma interferon (IFN-γ) were detected locally in vaginal washes of the Depo 5 group but not the Depo 15 group. After HSV-2 challenge, an early peak of IFN-γ in the Depo 5 group coincided with clearance of the virus. In Depo 15 animals IFN-γ was present throughout the 6 days postinfection. HSV-2-specific T-cell cytokine responses measured in the lymph node cells of Depo 5 TK−-immunized mice indicated a significantly higher Th1 response than that of Depo 15 TK−-immunized mice. The protection after HSV-2 challenge in the Depo 5 group correlated with increased local HSV-2 glycoprotein B (gB)-specific immunoglobulin G (IgG) and IgA responses seen in the vaginal secretions. The Depo 15 group had poor gB-specific antibody responses in the genital tract after HSV-2 challenge. These results indicate that longer exposure to Depo leads to poor innate and adaptive immune responses to HSV-2 that fail to protect mice from subsequent genital challenges.

Collaboration


Dive into the Ali A. Ashkar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Navkiran Gill

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge