Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Navkiran Gill is active.

Publication


Featured researches published by Navkiran Gill.


EMBO Reports | 2012

Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma

Shannon L. Russell; Matthew Gold; Martin Hartmann; Benjamin P. Willing; Lisa Thorson; Marta Wlodarska; Navkiran Gill; Marie-Renée Blanchet; William W. Mohn; Kelly M. McNagny; B. Brett Finlay

Allergic asthma rates have increased steadily in developed countries, arguing for an environmental aetiology. To assess the influence of gut microbiota on experimental murine allergic asthma, we treated neonatal mice with clinical doses of two widely used antibiotics—streptomycin and vancomycin—and evaluated resulting shifts in resident flora and subsequent susceptibility to allergic asthma. Streptomycin treatment had little effect on the microbiota and on disease, whereas vancomycin reduced microbial diversity, shifted the composition of the bacterial population and enhanced disease severity. Neither antibiotic had a significant effect when administered to adult mice. Consistent with the ‘hygiene hypothesis’, our data support a neonatal, microbiota‐driven, specific increase in susceptibility to experimental murine allergic asthma.


Infection and Immunity | 2011

Antibiotic Treatment Alters the Colonic Mucus Layer and Predisposes the Host to Exacerbated Citrobacter rodentium-Induced Colitis

Marta Wlodarska; Benjamin P. Willing; K. M. Keeney; Alfredo Menendez; Kirk S. B. Bergstrom; Navkiran Gill; Shannon L. Russell; Bruce A. Vallance; B. Brett Finlay

ABSTRACT Antibiotics are often used in the clinic to treat bacterial infections, but the effects of these drugs on microbiota composition and on intestinal immunity are poorly understood. Citrobacter rodentium was used as a model enteric pathogen to investigate the effect of microbial perturbation on intestinal barriers and susceptibility to colitis. Streptomycin and metronidazole were used to induce alterations in the composition of the microbiota prior to infection with C. rodentium. Metronidazole pretreatment increased susceptibility to C. rodentium-induced colitis over that of untreated and streptomycin-pretreated mice, 6 days postinfection. Both antibiotic treatments altered microbial composition, without affecting total numbers, but metronidazole treatment resulted in a more dramatic change, including a reduced population of Porphyromonadaceae and increased numbers of lactobacilli. Disruption of the microbiota with metronidazole, but not streptomycin treatment, resulted in an increased inflammatory tone of the intestine characterized by increased bacterial stimulation of the epithelium, altered goblet cell function, and thinning of the inner mucus layer, suggesting a weakened mucosal barrier. This reduction in mucus thickness correlates with increased attachment of C. rodentium to the intestinal epithelium, contributing to the exacerbated severity of C. rodentium-induced colitis in metronidazole-pretreated mice. These results suggest that antibiotic perturbation of the microbiota can disrupt intestinal homeostasis and the integrity of intestinal defenses, which protect against invading pathogens and intestinal inflammation.


The Journal of Infectious Diseases | 2004

Toll-Like Receptor (TLR)-3, but Not TLR4, Agonist Protects against Genital Herpes Infection in the Absence of Inflammation Seen with CpG DNA

Ali A. Ashkar; Xiao-Dan Yao; Navkiran Gill; Dusan Sajic; Amy J. Patrick; Kenneth L. Rosenthal

We previously demonstrated that delivery of CpG oligodeoxynucleotide (ODN) to vaginal mucosa induced an innate mucosal antiviral state that protected against intravaginal challenge with herpes simplex virus (HSV)-2. We report that mucosal, but not systemic, delivery of ligands for Toll-like receptor (TLR)-3, but not TLR4, induced protection against genital HSV-2 challenge that was not accompanied by the local inflammation and splenomegaly seen after treatment with CpG ODN. Surprisingly, TLR4 messenger (m) RNA expression was shown to be higher than that of TLR3 or TLR9 in murine genital mucosa. Similarly, murine RAW264.7 cells were shown to express more mRNA for TLR4 than TLR3 or TLR9, yet treatment of these cells with double-stranded RNA provided greater protection than lipopolysaccharide or CpG ODN. These results indicate that TLR3 ligand induces a more potent antiviral response than TLR4 and TLR9 ligands and may be a safer means of protecting against sexually transmitted viral infections.


PLOS ONE | 2011

The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

Rosana B. R. Ferreira; Navkiran Gill; Benjamin P. Willing; L. Caetano M. Antunes; Shannon L. Russell; Matthew A. Croxen; B. Brett Finlay

The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens.


Journal of Virology | 2006

Induction of Innate Immunity against Herpes Simplex Virus Type 2 Infection via Local Delivery of Toll-Like Receptor Ligands Correlates with Beta Interferon Production

Navkiran Gill; Philip M. Deacon; Brian D. Lichty; Karen L. Mossman; Ali A. Ashkar

ABSTRACT Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is not well-defined. Here we report that production of beta interferon (IFN-β) but not production of IFN-α, IFN-γ, or tumor necrosis factor alpha (TNF-α) strongly correlates with innate protection against HSV-2. Local delivery of poly(I:C) and CpG oligodeoxynucleotides induced significant production of IFN-β in the genital tract and provided complete protection against intravaginal (IVAG) HSV-2 challenge. There was no detectable IFN-β in mice treated with ligands for TLR4 or TLR2, and these mice were not protected against subsequent IVAG HSV-2 challenge. There was no correlation between levels of TNF-α or IFN-γ in the genital tract and protection against IVAG HSV-2 challenge following TLR ligand delivery. Both TNF-α−/− and IFN-γ−/− mice were protected against IVAG HSV-2 challenge following local delivery of poly(I:C). To confirm that type I interferon, particularly IFN-β, mediates innate protection, mice unresponsive to type I interferons (IFN-α/βR−/− mice) and mice lacking IFN regulatory factor-3 (IRF-3−/− mice) were treated with poly(I:C) and then challenged with IVAG HSV-2. There was no protection against HSV-2 infection following poly(I:C) treatment of IFN-α/βR−/− or IRF-3−/− mice. Local delivery of murine recombinant IFN-β protected C57BL/6 and IRF-3−/− mice against IVAG HSV-2 challenge. Results from these in vivo studies clearly suggest a strong correlation between IFN-β production and innate antiviral immunity against HSV-2.


Journal of Immunology | 2008

NK Cells Play a Critical Protective Role in Host Defense against Acute Extracellular Staphylococcus aureus Bacterial Infection in the Lung

Cherrie-Lee Small; Sarah McCormick; Navkiran Gill; Kapilan Kugathasan; Michael Santosuosso; Nickett S. Donaldson; David E. Heinrichs; Ali A. Ashkar; Zhou Xing

Staphylococcus aureus remains a common cause of nosocomial bacterial infections and are often antibiotic resistant. The role of NK cells and IL-15 and their relationship in host defense against extracellular bacterial pathogens including S. aureus remain unclear. We have undertaken several approaches to address this issue using wild type (WT), IL-15 gene knock-out (KO), and NK cell-depleted mouse models. Upon pulmonary staphylococcal infection WT mice had markedly increased activated NK cells, but not NKT or γδ T cells, in the airway lumen that correlated with IL-15 production in the airway and with alveolar macrophages. In vitro exposure to staphylococcal products and/or coculture with lung macrophages directly activated NK cells. In contrast, lung macrophages better phagocytosed S. aureus in the presence of NK cells. In sharp contrast to WT controls, IL-15 KO mice deficient in NK cells were found to be highly susceptible to pulmonary staphylococcal infection despite markedly increased neutrophils and macrophages in the lung. In further support of these findings, WT mice depleted of NK cells were similarly susceptible to staphylococcal infection while they remained fully capable of IL-15 production in the lung at levels similar to those of NK-competent WT hosts. Our study thus identifies a critical role for NK cells in host defense against pulmonary extracellular bacterial infection and suggests that IL-15 is involved in this process via its indispensable effect on NK cells, but not other innate cells. These findings hold implication for the development of therapeutics in treating antibiotic-resistant S. aureus infection.


Journal of Immunology | 2008

Cutting Edge: FimH Adhesin of Type 1 Fimbriae Is a Novel TLR4 Ligand

Karen L. Mossman; M. Firoz Mian; Nicole M. Lauzon; Carlton L. Gyles; Brian D. Lichty; Randy Mackenzie; Navkiran Gill; Ali A. Ashkar

Several TLR ligands of bacterial origin induce innate immune responses. Although FimH, the adhesin portion of type 1 fimbria, plays an important role in the pathogenicity of some Gram-negative bacteria, its ability to stimulate the innate immune system via TLR signaling remains unclear. In this study we report that FimH induces potent innate responses in a MyD88-dependent fashion. The FimH-induced innate activity was restricted to cells expressing TLR4. In addition, FimH was able to bind directly to TLR4. More importantly, cells unresponsive to LPS were responsive to FimH and the presence or absence of MD-2 and CD14 had no effect on FimH activity. Our data suggest that TLR4 is a functional receptor for the adhesin portion of bacterial type 1 fimbria.


Nature Immunology | 2010

The future of mucosal immunology: studying an integrated system-wide organ

Navkiran Gill; Marta Wlodarska; B. Brett Finlay

Over the next 10 years, it will be important to shift the focus of mucosal immunology research to make further advances. Examination of the mucosal immune system as a global organ, rather than as a group of individual components, will identify and characterize relationships between mucosal sites.


Journal of Virology | 2005

NK and NKT Cell-Independent Contribution of Interleukin-15 to Innate Protection against Mucosal Viral Infection

Navkiran Gill; Kenneth L. Rosenthal; Ali A. Ashkar

ABSTRACT Interleukin-15 (IL-15) is essential for the development, maturation, and function of NK and NKT cells, which are critical components of the innate immune defense against viral infections. We recently showed that mice lacking IL-15 and/or NK/NKT cells are significantly more susceptible to intravaginal (IVAG) herpes simplex virus type 2 (HSV-2) infection than control mice. For this study, we examined whether IL-15 has any direct antiviral activity, independent of NK/NKT cells, in innate protection against HSV-2 infection. A sensitive enzyme-linked immunosorbent assay for murine IL-15 was developed and used to show that IVAG HSV-2 infection induces IL-15 in vaginal washes. Using immunohistochemistry, we detected IL-15-positive cells in the submucosa and vaginal epithelium following IVAG HSV-2 infection. Local, but not systemic, delivery of murine recombinant IL-15 (mrIL-15) to the genital mucosae of IL-15−/− and RAG-2−/− γc−/− mice, which both lack NK and NKT cells, resulted in significant reductions in HSV-2 titers in genital washes and 60% survival following IVAG HSV-2 challenge. Furthermore, we showed that IL-15 is important for CpG oligodeoxynucleotide (ODN)-induced innate protection against genital HSV-2 infection. While 100% of CpG ODN-treated RAG2−/− γc−/− mice, which are capable of producing IL-15 but lack NK/NKT cells, survived an IVAG HSV-2 challenge, only 60% of CpG ODN-treated IL-15−/− mice survived, and all of these mice had similar vaginal viral titers to those in control mice by day 3 postchallenge. Lastly, a treatment of RAW264.7 cells with mrIL-15 induced the production of tumor necrosis factor alpha and beta interferon (IFN-β), but not IFN-α, and significantly protected them against HSV-2 infection in vitro. The results of these studies indicate that IL-15 can act independently of NK/NKT cells in mediating the innate defense against viral infection.


Cellular Microbiology | 2011

Roadblocks in the gut: barriers to enteric infection.

Navkiran Gill; Marta Wlodarska; B. Brett Finlay

This review discusses the barriers an enteric pathogen encounters when establishing an infection in the intestinal tract. There are potential barriers in the lumen that increase competition for nutrients and space. The role of mucus layer, and the antimicrobial peptides and secretory IgA sequestered within it, are also significant barriers. After overcoming these defences, the pathogen encounters the epithelial layer. This layer can be broken down into various protective components including enterocytes, Paneth cells, goblet cells, M cells and pathogen recognition receptors. Collectively, these intestinal defences constitute significant barriers that pathogens must overcome to successfully colonize this important mucosal surface.

Collaboration


Dive into the Navkiran Gill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Brett Finlay

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Benjamin P. Willing

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marta Wlodarska

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Shannon L. Russell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Caetano M. Antunes

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rosana B. R. Ferreira

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge